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The Fermi Large-Area Telescope (LAT)
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electron-positron pair




PSs important for gamma-ray signals of DM

Import to understand contributions from unresolved PSs to
gamma-ray background to constrain contributions from dark
matter (DM)



The Fermi Gamma-Ray Sky

Data taken from ~August 4, 2008 to December 5, 2013
HEALPIX nside = 128 (Npix = 196, 608)
~2—12 GeV




GeV Excess: Inner Galaxy
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GeV Excess: Spectrum
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Pulsars: Spectrum

Millisecond pulsar spectrum similar to excess (from 61
millisecond pulsars and 36 globular clusters)

Dark Matter =
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1507.05616: disrupted globular clusters can explain pulsar
distribution (Cholis, Hooper, Linden)



Astrophysical Scenarios

Can we use the Fermi data to differentiate between smooth and
unresolved PS emission?



Photon Statistics: DM vs. Point Sources
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Photon Statistics: Point Sources

> p,(f) = probability of finding k& photons in pixel p
» Smooth emission: Poissonian counting statistics:
p = ke /Kl
» Point-source emission: Non-Poissonian counting statistics
» (1) What is probability to find a PS in a given pixel?
» (2) Given a PS, what is the probability it produces &

photons?
F —n1
N(p) AP <E}> ) F > Fb

F,
» Fis average flux (photons /cm? /s)
» AP follow a spatial template



Non-Poissonian template fit (NPTF)

» data set d (counts in each pixel {n,})
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The models: templates
Fermi p6 diffuse (1) Fermi bubbles (1)
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Isotropic point sources
e Region: mask 30° around plane

e include diffuse, bubbles, isotropic, and isotropic PS



Isotropic point sources: source-count function
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Region: mask 4° around plane, out to 30°
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NFW point sources: source-count function
e For ROI out to 10°, with 4° around plane masked
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NFW point sources: source-count function
e Prediction: ~200 PS’s in inner galaxy (large uncertainties)
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NFW point sources: flux fraction

e For ROI out to 10°, with 4° around plane masked
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Model comparison

» NFW DM + NFW PS favored over NFW DM with Bayes
factor ~10° (very strong evidence)
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Tentative conclusion: GeV excess better fit by point-source
emission than smooth (DM) emission
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Find the PS’s! (work in progress with Fermi data and
X-rays)

In depth study of NPTF using simulated data (in progress)
New method, new applications: apply more carefully to
high latitudes (energy dependence) (in progress)

New applications: PSs in other data sets, such as IceCube
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Questions?
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NPTF Systematics

>

Spatially mis-modeled background: real concern, can
affect source-count function, but pref. for PSs seems
robust

Mis-modeling signal (NFW profile): appears to have
minimal effect

Mis-modeling angular resolution: predictable but minimal
effect.

Over-constrained source-count function: added more
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Validation with Monte-Carlo-generated “fake” data



Where are the PSs? —log[1 — CDF(data; DM model)]
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Statistics of CDF(data; DM model)
e In each pixel: ¢”) = 1 — CDF(data; DM model)

e Use PS-masked maps (within 30° of GC and |b| > 2°)
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Energy-dependent non-Poissonian template fit
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Energy-dependent non-Poissonian template fit
e PRELIMINARY!!! (L. Necib and B.S.)
¢ Data set: new Pass 8 data
e mask: |b| > 1° within 30° of GC
e mask: top 300 PSs masked + all 3FGL PSs modeled
e Energy range: 4 log-spaced bins € [1.89,11.94] GeV.
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Energy-dependent non-Poissonian template fit
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Isotropic point sources: fluxes
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Isotropic point sources: fluxes
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Isotropic point sources: fluxes
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Isotropic point sources: fluxes
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GeV Excess: Spectrum
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