Gauge-Higgs Unification with the dynamical boundary conditions and it's SU(5) application

Kengo Yamamoto

Department of Physics, Osaka University

Aug. 25, 2015

based on

Nucl. Phys.B 883 p.45-58

Purpose of our research

- · For GHU model in extra dim. there are many possible choices for boundary conditions imposed on fields
- · These boundary conditions are given by hand as definition of models

- · Determine the boundary conditions from some dynamics
 - Extend to GHU with dynamics of boundary conditions

- · Define the model by integrating all possible configurations of boundary conditions in the partition function of system
 - Some class of boundary conditions practically don't contribute to partition function

Gauge-Higgs Unificatioin

Gauge theory defined on compactified extra dimensions

$$A_M = (A_\mu, (A_5))$$
vacuum expectation value

Identify A_5 with Higgs field!

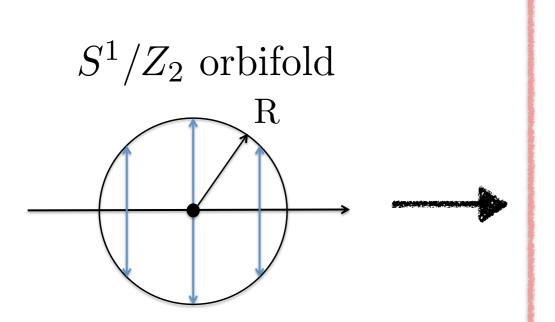
S.Funatsu,H.Hatanaka,Y.Hosotani,Y.Orikasa,T.Shimotani Phys.Lett. B722 94-99

Good points

- · VEV of A_5 is dynamically generated
- · Finiteness of the VEV is guaranteed by gauge symmetry

Boundary conditions on S^1/Z_2 orbifold

Y.Kawamura, Prog. Theor. Phys. 103 613 L.J.Hall, Y.Nomura, Phys. Rev. D64 055003



Boundary conditions

$$\begin{pmatrix} A_{\mu}(x,-y) \\ A_5(x,-y) \end{pmatrix} = P_0 \begin{pmatrix} A_{\mu}(x,y) \\ -A_5(x,y) \end{pmatrix} P_0^{\dagger}$$

$$\begin{pmatrix} A_{\mu}(x, \pi R - y) \\ A_{5}(x, \pi R - y) \end{pmatrix} = P_{1} \begin{pmatrix} A_{\mu}(x, \pi R + y) \\ -A_{5}(x, \pi R + y) \end{pmatrix} P_{1}^{\dagger}$$

- P_0 , P_1 satisfy parity restriction $P_0^2 = P_1^2 = 1$
- $\cdot P_0, P_1$ are the elements of U(N)

$$P_0, P_1 \in U(N)$$

Arbitrariness problem of boundary conditions

- · Gauge transformation $\Omega(x,y)$ affects P_0 , P_1 $P_0 \longrightarrow \Omega(x,-y)P_0\Omega^{\dagger}(x,y), \qquad P_1 \longrightarrow \Omega(x,\pi R-y)P_1\Omega^{\dagger}(x,\pi R+y)$
- · Symmetry of boundary conditions

$$\Omega(x, -y)P_0\Omega^{\dagger}(x, y) = P_0, \quad \Omega(x, \pi R - y)P_1\Omega^{\dagger}(x, \pi R + y) = P_1$$

Ex.) SU(5) case

(i)
$$P_0 = diag\{+1, +1, +1, +1, +1\}, P_1 = diag\{+1, +1, +1, +1, -1\}$$

 $SU(5) \longrightarrow SU(4) \times U(1)$

(ii)
$$P_0 = P_1 = diag\{-1, -1, -1, +1, +1\}$$

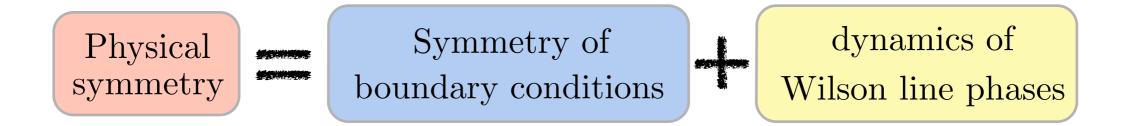
 $SU(5) \to SU(3) \times SU(2) \times U(1)$

There are many possible choices for boundary conditions

Arbitrariness problem!

Equivalence class

 A_5 can acquire VEV from dynamics of Wilson line phases \longrightarrow leads to spontaneous symmetry breaking



The two boundary condition sets can be related by dynamics of Wilson line phases \longrightarrow the same physics!

Boundary conditions are classified into equivalence classes

Y.Hosotani, Annals. phys. 190 233-253

For SU(N) case, boundary conditions are classified into $(N+1)^2$ equivalence classes

Model

Partition function for SU(N) gauge theory on $M^4 \times S^1/Z_2$

$$Z = \int_C dP_0 \int_C dP_1 \int \mathcal{D}A_M \mathcal{D}\bar{\psi} \mathcal{D}\psi \mathcal{D}\phi \bigg|_{P_0, P_1} e^{iS(A_M, \psi, \phi, P_0, P_1)}$$

$$C = \{ P_a \in U(N), \quad \rho_i = \pm 1 \} \quad a = 1, 2$$

 dP_0, dP_1 : invariant measure for U(N) group

 $\int_C dP_0 \int_C dP_1$ = Sum of contribution of equivalence classes

- Investigate each contribution of equivalence class in partition function
- Compare the volumes among each equivalence class

Result

- · There are the difference among each volume of equivalence class
- · Only the equivalence classes which have the highest volume practically contributes to partition function

For SU(5) case

$$P_0 = P_1 = diag\{+1, +1, +1, +1, +1\}$$

$$SU(5) \longrightarrow SU(5)$$

$$P_0 = diag\{+1, +1, +1, +1, +1\}, \quad P_1 = diag\{+1, +1, +1, +1, -1\}$$

$$SU(5) \longrightarrow SU(4) \times U(1)$$

$$P_0 = P_1 = diag\{-1, -1, -1, +1, +1\}$$

 $SU(5) \rightarrow SU(3) \times SU(2) \times U(1)$

Nucl. Phys. B, 883, 45-58 (2014)

Result

- · There are the difference among each volume of equivalence class
- · Only the equivalence classes which have the highest volume practically contributes to partition function

For SU(5) case

$$P_{0} = P_{1} = diag\{+1, +1, +1, +1, +1\}$$

$$SU(5) \longrightarrow SU(5)$$

$$P_{0} = diag\{+1, +1, +1, +1, +1\}, \quad P_{1} = diag\{+1, +1, +1, +1, -1\}$$

$$SU(5) \longrightarrow SU(4) \times U(1)$$

$$P_0 = P_1 = diag\{-1, -1, -1, +1, +1\}$$

 $SU(5) \to SU(3) \times SU(2) \times U(1)$

Result

For SU(5) case

Only 4 equivalence classes contribute to the partition function

(i)
$$\begin{bmatrix} P_0 = \{+1, +1, +1, -1, -1\} \\ P_1 = \{+1, +1, +1, -1, -1\} \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} P_0 = \{+1, +1, +1, -1, -1\} \\ P_1 = \{-1, -1, -1, +1, +1\} \end{bmatrix}$$
 (iv)
$$\begin{bmatrix} P_0 = \{-1, -1, -1, +1, +1\} \\ P_1 = \{+1, +1, +1, -1, -1\} \end{bmatrix}$$

$$\begin{bmatrix} P_0 = \{-1, -1, -1, +1, +1\} \\ P_1 = \{-1, -1, -1, +1, +1\} \end{bmatrix}$$

· These equivalence classes has $SU(5) \to SU(3) \times SU(2) \times U(1)$ symmetry breaking pattern with appropriate matter content

Summary

- · Gauge-Higgs Unification has the arbitrariness for the boundary condition and in present Gauge-Higgs study, these boundary conditions are given by hand
- · We constructed Gauge-Higgs Unification model including the dynamics of boundary conditions
- · We found Only restricted class of boundary conditions practically contribute to partition function by analyzing each volume of equivalence class

Thanks for your attention!

Reference

- [1]K.Yamamoto, Nucl. Phys.B, 883, 45-58 (2014)
- [2]S.Funatsu, H.Hatanaka, Y.Hosotani, Y.Orikasa, T.Shimotani Phys. Lett. B722 (2013) 94-99
- [3]Y.Kawamura, Prog. Theor. Phys. 103 (2000) 613
- [4]L.J.Hall, Y.Nomura, Phys. Rev. D64 (2001) 055003
- [5]Y.Hosotani, Annals. phys. 190 (1989) 233-253
- [6] N.Haba, Y.Hosotani, Y.Kawamura, Prog. Theor. Phys. 111 (2004) 265-289