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Gauge theory defined on compactified extra dimensions

AM = (Aµ, A5)

vacuum expectation value

In 5D case

· VEV of A5 is dynamically generated

· Finiteness of the VEV is guaranteed

by gauge symmetry

Good points

S.Funatsu,H.Hatanaka,Y.Hosotani,Y.Orikasa,T.Shimotani

Phys.Lett. B722 94-99
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Boundary conditions on S1/Z2 orbifold

R

S1/Z2 orbifold

· P0, P1 are the elements of U(N)

P0, P1 � U(N)

Y.Kawamura, Prog. Theor. Phys. 103 613

L.J.Hall,Y.Nomura, Phys. Rev. D64 055003

�
Aµ(x, �y)

A5(x, �y)
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�
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P †
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Arbitrariness problem of boundary conditions

Ex.) SU(5) case

P0 = P1 = diag{�1, �1, �1, +1, +1}
SU(5) � SU(3) � SU(2) � U(1)

(i)

(ii)

There are many possible choices for boundary conditions

Arbitrariness problem !
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Equivalence class

A5 can acquire VEV from dynamics of Wilson line phases

Symmetry of
boundary conditions

dynamics of

Wilson line phases
Physical

symmetry

�� leads to spontaneous symmetry breaking

The two boundary condition sets can be related

by dynamics of Wilson line phases

Boundary conditions are classified into equivalence classes

For SU(N) case, boundary conditions are classified

into (N + 1)2 equivalence classes

�� the same physics !

Y.Hosotani, Annals. phys. 190 233-253

N.Haba,Y.Hosotani,Y.Kawamura, Prog.Theor.Phys. 111 265- 289



Model

Partition function for SU(N) gauge theory on M4 � S1/Z2

Z =

�

C
dP0

�

C
dP1

�
DAMD�̄D�D�

����
P0,P1

eiS(AM ,�,�,P0,P1)

C = {Pa � U(N), �i = ±1} a = 1, 2

dP0, dP1 : invariant measure for U(N) group

�� Compare the volumes among each equivalence class
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Nucl. Phys. B, 883, 45-58 (2014)
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Nucl. Phys. B, 883, 45-58 (2014)



Summary

· Gauge-Higgs Unification has the arbitrariness for the

boundary condition and in present Gauge-Higgs study,

these boundary conditions are given by hand

· We constructed Gauge-Higgs Unification model including

the dynamics of boundary conditions

· We found Only restricted class of boundary conditions

practically contribute to partition function by analyzing

each volume of equivalence class
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