SEARCHES FOR LEPTON-JETS WITH THE ATLAS DETECTOR AT THE LHC

Mahsana Haleen DESY Zeuthen

On behalf of the ATLAS collabor

SUSY2015: 08/27/15

M. Haleem: Searches for LJs with the ATLAS

Outline

- Introduction
- Lepton-jets
 - Prompt and long-lived
- Search strategy
- Background
- Results and interpretations

Introduction

Conflicting results from astrophysical experiments inspired interesting models for production and decays of dark sector particles!

Originally proposed by N. A-. Hamed, N. Weiner arXiv: 0810.0714

- SM particles could couple to hidden sector via Higgs portal or kinetic mixing
- The lightest unstable particle (γ_d) in the hidden sector could couple back to SM via kinetic mixing
- Search at LHC for γ_d production could constrain kinetic mixing (ϵ), and mass (m_{vd}) parameters

Lepton-jets

- Low mass (O(1) GeV) dark photons, γ_d , may be produced with large boost in the decay chain of heavier states
- $\gamma_{\rm d}$ can decay mostly into SM leptons (e^+e^- , or $\mu^+\mu^-$), and also into light mesons
 - → collimated collection of energetic leptons form a "lepton-jet"
 - depending on the size of kinetic mixing (ε) and masses of γ_d and leptons, the decay could be **prompt** or **long-lived** (typically $\varepsilon > 10^{-5}$ for prompt)

$$\Gamma_{l} = \frac{1}{3} \alpha \varepsilon^{2} m_{\gamma_{d}} \sqrt{1 - \frac{4m_{l}^{2}}{m_{\gamma_{d}}^{2}}} \left(1 + \frac{2m_{l}^{2}}{m_{\gamma_{d}}^{2}}\right)$$

• γ_d decay branching fractions and lifetime are model-dependent γ_d Branching Ratio lepton-jet

Analysis strategy

- ATLAS search is performed for events containing at least two lepton-jets (LJs) considering both prompt and displaced productions
 - most models predict at least two lepton-jets in the final states (arXiv:0901.0283, arXiv: 0909.0290, arXiv: 1002.2952, etc...)
- Search strategy is nearly model independent selection
 - no restrictions on other objects of event
 - study the γ_d mass in [0.1, 2] GeV range
- Prompt and displaced LJs have somewhat different reconstruction methods
 - displaced LJ search covers upto 7 m (first muon-trigger plane) transverse distance range of γ_d decay position from interaction point
 - γ_d decay into e^+e^- only within hadronic calorimeter to reduce background
- Results are interpreted for various topologies, such as Higgs \rightarrow N γ_d +X, or squark + squark \rightarrow N γ_d + X, where N>=2

Lepton-jets signal models

SUSY-mediated:

Due to smaller cross section of squark pair production, this model is yet more interesting for prompt LJ search

Lepton-jets reconstruction

- Prompt LJs reconstructions are based on clustering tracks (p_T ≥ 10 GeV) in a narrow cone, and pointing them to energy deposited in the calorimeter or to the tracks in muon spectrometers
 - overlapped tracks and energy clusters due to limited intrinsic resolution of ATLAS sub-detectors
 - reconst. eff upto ~60%
 - overwhelming QCD background in *e*-channel
 - challenge in the calibrations
- Similar clustering technique for displaced LJ reconstruction, but veto against inner detector tracks to suppress bkg
 - reconst. eff upto ~20%
 - substantial multi-jet and cosmic-ray bkg contributions
 - additional challenge in trigger and decay vertices reconstruction beyond precision tracking volume
 - this analysis ignores vertices reconstruction

Lepton-jets selection

- Discriminating LJ variables against the QCD bkg and cosmic-ray
 - e.g high-p_T tracks multiplicity, isolation in inner detector and calorimeter, profile of energy deposition of electrons in the calorimeters, timing
 - displaced LJ can have different shower profile compared to prompt LJ if γ_d decayed in the middle of calorimeter
 - requirement of ≥ 2LJs per event suppresses all other backgrounds such as W/Z/γ*+jets, di-bosons, and ttbar processes

Background (prompt LJ)

- Background due to QCD jet faking as lepton-jet is determined from two nearly uncorrelated discriminating variables using data-driven ABCD likelihood method
 - region A represents signal region
 - likelihood fit to all four regions to estimate background in region A
- Other backgrounds (e.g ttbar, diboson) tiny, and estimated via MC simulation

Background (displaced LJ)

- Same data-driven technique for multi-jet bkg estimation
 - choice of ABCD variables is independent of lepton-jet type
- Cosmic-ray is additional source of background
 - determined from empty bunch crossings data

20 15 10 5	AT 20 	<i>LAS</i> .3.fb ⁻¹ √s - ₿	8'TeV
5	D 1	2	3 ∆¢ [rad]

8 TeV data @ 20.3 fb ⁻¹	119
Cosmic-ray	40 ± 11 ± 9
Multi-jet	70 ± 58 ± 11
Total background	110 ± 59 ± 14

JHEP 1411 (2014) 088

Interpretations (prompt LJ)

Phys Lett B 719 (2013) 299-317

- No significant excess is found in 7 TeV data compared to background prediction
- 95 %CL limits are placed on the cross section x BR of two lepton-jets
 - limits are extracted for lepton-jet production via SUSY mediator

	1113. Lett. 5715 (2015) 255 517		
Dark photon mass [MeV]	≥ 2 electron jets Obs (Exp) [pb]	≥ 2 muon jets Obs (Exp) [pb]	
150	0.082 (0.082)		
300	0.11 (0.11)	0.017 (0.011)	
500	0.20 (0.21)	0.019 (0.012)	

Constraints on the Higgs portal topology could also be established based on search results

- higher production cross section of gg ightarrow H
- Extension of constraints for other masses of γ_d upto 2 GeV are possible with relatively detailed studies on calibration
- Results with 8 TeV data are imminent with extended studies!

Interpretations (displaced LJ)

- No significant excess is found in 8 TeV data compared to background prediction
- 95 %CL limits are placed on the cross section x BR
 - limits are extracted for lepton-jet production via Higgs portal (H > 2 γ_d + X or H > 4 γ_d + X) for 0.4 GeV γ_d

Kinetic mixing vs mass exclusion

Kinetic mixing vs mass exclusion

Conclusions

- Lepton-jets in the final states are distinct signatures for various models of dark sector
- We have conducted a nearly model independent search for lepton-jets using Run I data at ATLAS.
 - prompt lepton-jets search results with 8 TeV data will be released soon!
- The observed number of lepton-jets are consistent with the background prediction.
 - 95%CL upper limits are established on γ_d production in Higgs-mediated and SUSYmediated topologies and 90%CL exclusions are extracted for γ_d mass and lifetime.
- Continue with the lepton-jet searches in Run II with further improvement in strategies!

Thanks

Few facts about ATLAS Run I sub-detectors

۲

• Pixels:

Barrel radial distance from IP: 5 cm < R < 12 cm Pixel granularity: 50 μ m x 400 μ m in r Φ x Z Intrinsic resolution: 10 μ m x 115 μ m in r Φ x Z

• SCT:

Barrel radial distance from IP: 12 cm < R < 52 cm strips with 80 μ m pitch and 40 mrad stereo angle Intrinsic resolution: 17 μ m x 580 μ m in r Φ x Z

• TRT:

Barrel radial distance from IP: 56 cm < R < 108 cm Intrinsic resolution: 130 μ m in r Φ

Calorimeter:

Barrel radial distance from IP: 120 cm < R < 230 cm Spatial granularity in 2^{nd} sampling: 0.025 x 0.025 in $\Delta\eta \ x \ \Delta\Phi$

Muon spectrometer:

Barrel radial distance from IP: 500 cm < R < 1200 cm EC longitudinal distance: 750 cm < rZ < 2250 cm Spatial size of L1 trigger ROI: 0.2x 0.2 in $\Delta\eta \propto \Delta\Phi$ for barrel and 0.1x 0.1 in $\Delta\eta \propto \Delta\Phi$ for end-cap.

Dark photons

- Existence of dark matter (DM) is supported by astrophysical measurements
 - one of the greatest mysteries unexplained by SM
- DM could be composed of massive particles that interact very weakly with ordinary matter
 - most theories predict mass range between a few MeV to a few TeV
- Possible candidates:
 - lightest SUSY stable particles, stable Kaluza-Klein modes, sterile neutrinos, dark sector particles predicted by hidden sector particle theories, WIMPs, etc..

This talk is focused on ~ 1 GeV mass dark photon

Lepton-jets signal models

Displaced lepton-jets types

JHEP 1411 (2014) 088

21

Lepton-jets reconstruction efficiencies (I)

Reconstruction efficiencies for a few lepton-jet types as a function of $\gamma_d p_T$

|d0| < 200 mm and |z0| < 270 mm cuts on muon tracks in displaced LJ to suppress cosmic-ray by a factor of 200, while reducing signal efficiencies by 25-50%

JHEP 1411 (2014) 088

Lepton-jets reconstruction efficiencies (II)

Reconstruction efficiencies for a few lepton-jet types as a function of γ_d decay length $_{\rm JHEP\,\,1411\,\,(2014)\,\,088}$

SUSY2015: 08/27/15

M. Haleem: Search for LJs with the ATLAS

23

Trigger efficiencies

Trigger efficiencies for long-lived γ_{d} as a function of $\gamma_{d} \; p_{T}$

Electron channel suffers from loss in efficiency for γ_d decaying well before calorimeter that fail to pass trigger cut on electromagnetic to hadronic energy ratio.

Track reconstruction at small opening angle

Discriminating variables distributions of LJs

SUSY2015: 08/27/15

M. Haleem: Search for LJs with the ATLAS

ABCD likelihood method for background estimation

$$\mu_A = \mu^U + \mu + \mu_A^K$$
$$\mu_B = \mu^U \tau_B + \mu b + \mu_B^K$$
$$\mu_C = \mu^U \tau_C + \mu c + \mu_C^K$$
$$\mu_D = \mu^U \tau_B \tau_C + \mu d + \mu_D^K$$

 μ : signal strength μ^{U} : background strength b, c, d: signal contaminations τ_{B}, τ_{C} : ratio of the background in side-bands $\mu_{A}^{K}, \mu_{B}^{K}, \mu_{C}^{K}, \mu_{D}^{K}$: bkg estimate from MC

Minimize the likelihood $\prod_{i=A,B,C,D} \frac{e^{-\mu_i} \mu_i^{n_i}}{n_i!}$ to extract

the background μ^{U} .

Phys. Lett. B 719 (2013) 299-317

Signal MC (prompt LJ)

- Background due to QCD processes is determined from two nearly uncorrelated discriminating variables using data-driven ABCD method
 - Region A is denoted as signal region

Displaced LJ signal detection efficiency vs cτ

- LJs are reconstructed that decayed after pixel and before muon trigger plane
- Detection efficiency depends on mean lifetime cτ

Signal efficiencies

For prompt LJ search the signal efficiency ranges from 1.8% to 9.2% depending on γ_d mass and channel

γ _d mass MeV	Acceptance x eff (%) e-channel	Acceptance x eff (%) μ-channel
150	3.01 ± 0.30	
300	2.7 ± 0.5	9.2 ± 0.9
500	1.8 ± 0.5	8.5 ± 1.1

The overall detection efficiency for two displaced LJs for signal selection is 0.15%

M. Haleem: Search for LJs with the ATLAS

Prompt LJ 7 TeV data analysis systematics

Phys. Lett. B 719 (2013) 299-317

Source	Systematics uncertainty
Luminosity	3.9%
Trigger	1.5% - 2%
ID track or muon reconstruction at small ΔR	11% - 13%
Muon momentum scale/resolution	1%
Electron energy scale	0.6%
Discriminating variables efficiency	1% - 10%

Displaced LJ 8 TeV data analysis systematics

Source	Systematics uncertainty
Luminosity	2.8%
Trigger	5.8% - 11%
Muon reconstruction at small ΔR	5.4%
Muon momentum scale/resolution	1.0%
Jet energy scale	0.9% - 1.7%
Effect of pile-up	4.1%
Multi-jet background	15%
Cosmic-ray background	22%

JHEP 1411 (2014) 088

32

