Search for long-lived massive particles in CMS CMS

Małgorzata Kazana

on behalf of the CMS Collaboration

National Centre

for Nuclear Research

SUSY 2015 Lake Tahoe, California August 23 – 29

Hunting for Long-Lived Particles OUTLINE:

- Various theoretical models predict naturally long-lived particles: pMSSM, GMSB, AMSB, Split-SUSY (with R-hadrons), RPV SUSY, Hidden Valley (HV), Little Higgs and more
- Challenging and interesting
 non-standard measurements and techniques of reconstructions,
 often difficult for triggering
- **Signature based searches** interpreted in the context of different models
- Review of EXOTIC LLP searches in the CMS
 - Results from CMS data collected
 in 2012 20/fb at 8TeV and in 2011 5/fb at 7TeV

Long-lived Signatures vs Th. models

- Lifetime categorization (studied so far in CMS):
 - Cross the detector
- Heavy stable (fractionaly, multi-, flip-) charged particles, HSCP High/low ionisation (dE/dx)

 - Delayed - - -
 - Delayed → extended time-of-flight (TOF) vrt SM objects
- Decay Inside the Georgian Policy of the Control o
 - neutral LLP: non-pointing or displaced objects or vertices HV
 - Stop inside the detector
- Delayed decays out-of-time in next bunch crossings

RPV

Heavy QUASI Stable Charged Particles

Cross the detector

JHEP 07(2013)122

Signal: Long-Lived Particles from GMSB, Split-SUSY and others:

- lepton like (stau)
 - fractional charge $(Q = n \cdot 1/3e)$
 - mulitple charge $(Q = n \cdot e)$
- R-hadrons formed from gluino or stop
- charge can flip while crossing particle interacts with material

ldea of HSCP Search

HSCP can be **delayed** with respect to the *c-speed* SM particle

Muon System: Mass determination from β – TOF

ldea of HSCP Search

HSCP has high unusual **ionization** related to its mass

Tracker:

Tracker

Electromagnetic Calorimeter

Mass determination from dE/dx discriminants

$$I_h = K \frac{m^2}{p^2} + C$$

HSCP Selection

Event selection:

- Trigger: muon (pT>40 GeV) or MET > 150 GeV or mu pt> 60 GeV & MET > 65 GeV
- Basic pre-selection:
 pT>45GeV, |η|<2.1, |dxy| and |dz|<0.5cm,
 #Hits>7, very loose isolation, cosmic veto, etc.
- Selection optimised to for the best discovery reach for each class of models using track pT, Muon 1/β, Track I_{as} (dE/dx discriminator)
- Background from ABCD method

Five HSCP Search Paths

JHEP 07(2013)122

HSCP becoming neutral – Tracker-only

uses: pt, dE/dx

HSCP neutral in tracker, becoming charged

- Muon-only uses: pt, TOF

HSCP with $Q = n \cdot e$

Mutiply Charged Particles uses: dE/dx TOF, do not use pt, because reco pt ~ true pt/Q

5 HSCP with $Q = n \cdot 1/3e$

Fractionaly Charged Particles

uses: pt, dE/dx, no TOF to be inclusive

HSCP RESULTS

		Number of events						
	Selection criteria			$\sqrt{s} = 7 \text{TeV}$		$\sqrt{s} = 8 \text{TeV}$		
	p_{T} (GeV/c)	$I_{as}^{(\prime)}$	1/β	Mass (GeV/c²)	Pred.	Obs.	Pred.	Obs.
2. Tracker-only	>70	>0.4	_	>0	7.1 ± 1.5	8	33 ± 7	41
				>100	6.0 ± 1.3	7	26 ± 5	29
				>200	0.65 ± 0.14	0	3.1 ± 0.6	3
				>300	0.11 ± 0.02	0	0.55 ± 0.11	1
				>400	0.030 ± 0.006	0	0.15 ± 0.03	0
1. Tracker+TOF	>70	>0.125	>1.225	>0	8.5 ± 1.7	7	44 ± 9	42
				>100	1.0 ± 0.2	3	5.6 ± 1.1	7
				>200	0.11 ± 0.02	1	0.56 ± 0.11	0
				>300	0.020 ± 0.004	0	0.090 ± 0.02	0
Muon-only 3.	>230	_	>1.40	_	_	_	6±3	3
Q > 1e 4.	_	>0.500	>1.200	_	0.15 ± 0.04	0	0.52 ± 0.11	1
Q < 1e 5.	>125	>0.275		_	0.12 ± 0.07	0	1.0 ± 0.2	0

Mass (GeV/c2)

HSCP RESULTS

dE/dx

JHEP 07(2013)122

dE/dx + TOF

Mass determined from dE/dx

HSCP LIMITS

JHEP 07(2013)122

Stau R-hadrons (stop, gluino)

Mutiply Charged Particles

Fractionaly Charged Particles

HSCP re-interpretation by CMS

EPJ C (2015) 75:325

- Reinterpretation of the HSCP search results in context of pMSSM and AMSB
- Developed a technique to allow anyone to assess CMS sensitivity to any model predicting long-lived lepton-like particles
- The efficiency for HSCP particles is given as a function of β and η in bins of pT , it can be applied to any model if the kinematics is known

Probability maps of that LLP passes all HSCP cuts are expressed as a $f(\beta, pT, \eta)$ Pure GenLevel MC enough to verify results of HSCP analysis

HSCP re-interpretation by CMS

EPJ C (2015) 75:325

 Limits on the long-lived sector of the pMSSM sub-space for SUSY particle masses < 3 TeV:

95.9% (100%) of the points with a chargino lifetime τ≥ 10 ns (1000 ns) are

excluded by the present analysis of the results from the CMS search

HSCP re-interpretation by CMS

EPJ C (2015) 75:325

- Signal acceptance as a function of chargino mass for the AMSB model as predicted by the fast technique
- region on the chargino mass and lifetime parameter space in the context of the AMSB model with $\beta = 5$ and $\mu \ge 0$.

Displaced Jets

Decay inside the detector

Phys. Rev. D 91, 012007 (2015)

- Long-lived massive neutral particles decaying to quark-antiquark pairs
- Distinctive topology of a pair of jets originating at a secondary vertex

Displaced Jets

Phys. Rev. D 91, 012007 (2015)

Signal: $gg \rightarrow (non-SM) H \rightarrow 2X, X \rightarrow qq$

originating from Hidden Valley model, Split SUSY,

RPV SUSY, GMSB, etc.

Benchmark points
 M_H = [200, 400, 1000] GeV,
 M_X = [50,150,350] GeV,
 cτ_X = [3,20,35,40,300] cm

Event selection:

- Trigger: **HT >300 GeV** and > 1 **jets**with small fraction of prompt tracks
- Multivariate discriminant
 based on vertex track multiplicity, fraction
 of tracks with positive do, and variables
 from a dedicated track cluster algorithm

Displaced Jets RESULTS & LIMITS

hys. Rev. D 91, 012007 (2015)

- Background: ABCD prediction using jet variables and vertices infos
- Search optimised for two regions Lxy < 20 or Lxy > 20 cm
- For X mean lifetimes of 0.1 to 200 cm, the upper cross-section \times B² (X \rightarrow qq) limits are typically 0.3-300 fb

Stopped gluinos Stopped inside the detector

JHEP 08(2012)026

- Strategy:
- Search for LLPs (gluino from Split-SUSY with high energy losses) that have stopped in the CMS detector, during 7 TeV pp operations
- Stopped R-hadron can decay after a while (µsec, sec or days, months)
- Search in GAPS between LHC beam crossing

Trigger:

 Decays inside calorimeters could give trigger when there is no BX

Stopped gluinos RESULTS

JHEP 08(2012)026

- Data set: 4/fb @ 7TeV & search interval of 246 hours of trigger live time
- 12 events observed, expected bkg: 8.6 ± 2.4

Conclusions

- No evidence for new exotic long-lived particles... yet
- Data significantly constrains many models of BSM
- 2015 pp @ 13 TeV hunting for LLPs restarted
 - Higher energy → wider mass reach
 - More challenging searches
 with higher luminosity
 (tracks, isolation, triggering, etc.)
 - 25 ns collision mode → changes in L1 triggers

Work supported by Polish National Science Center UMO-2014/14/WST2/00428 & UMO-2014/15/B/ST2/03998

List of included publications

References:

JHEP 07(2013)122

Heavy stable charged particles (HSCP)

EPJ C (2015) 75:325

- Long-lived neutral particles
 - Displaced jet pairs

Phys. Rev. D 91, 012007 (2015)

Displaced lepton pairs

Phys. Rev. D 91, 052012 (2015)

Displaced supersymmetry

Phys. Rev. Lett. 114 (2015) 061801

Stopped particles

JHEP 08(2012)026

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

CMS limits on LLP

Status on March 2015

Displaced leptons

Decay inside the detector

Signal: gg \rightarrow (non-SM) H \rightarrow 2X, X \rightarrow I†I

 $\tilde{q} \rightarrow q \tilde{\chi} o, \tilde{\chi} o \rightarrow v l^{\dagger}l^{\dagger}$

Signature:

Lepton pair originating from displaced secondary vertex

Model:

Split-SUSY, weak RPV SUSY, Hidden Valley, Z' with LL neutrinos

MC simulation: $H_{mass} = 400 \text{ GeV}, X_{mass} = 150 \text{ GeV}$

Displaced Leptons

Trigger:

 ECAL & Muon System only, reconstructing of displaced tracks in Tracker not possible in online trigger

Selection:

 2 isolated, electrons (40,26 GeV) or 10 muons (26 GeV) with a good vertex 1

- Require both leptons significantly $^{\circ}$ $^{\circ}$ $^{\circ}$ displaced from primary vertex: $do/\sigma(do) > 12$
- Angle Δφ between vertex flight direction and dilepton momentum used to define signal/control region for background estimation

Displaced Leptons RESULTS

Phys. Rev. D 91, 052012 (2015)

Background Expected: 0 events – Observed: 0 in signal region with Lxy > 50 cm

Displaces stops

"Displaced SUSY" with R-parity violating stop decays

Signal: $\widetilde{tt} \rightarrow 2(bl)$ with $c\tau \sim 100 \mu m - 1 m$

- Strategy: Search for electron and muon final states without requirements on jets and MET
 Decay inside the det
- **Trigger:** single muon and cluster in ECAL
- Selection:
 isolated 1 mu & 1 ele
 pt > 25 GeV, |η|< 2.5
 opposite charges
 not inside jet pt > 10 GeV
- no common vertex
 0.1 mm < do < 20mm

Displaced stops RESULTS

Phys. Rev. Lett. 114 (2015) 061801

QCD background estimation:
 Use same-sign and non-isolated regions to derive it and validate it in control regions with smaller do

Displaced stops RESULTS

QCD background estimation:
 Use same-sign and non-isolated regions to derive it and validate it in control regions with smaller do

Event Source	$0.02 \text{ cm} < d_0 < 0.05 \text{ cm}$	$0.05 \text{ cm} < d_0 < 0.1 \text{ cm}$	$ d_0 > 0.1 \text{ cm}$
other EWK	$0.65 \pm 0.13 \pm 0.08$	$(0.89 \pm 0.53 \pm 0.11) \times 10^{-2}$	$<(89\pm53\pm11)\times10^{-4}$
top	$0.767 \pm 0.038 \pm 0.061$	$(1.25\pm0.26\pm0.10) imes10^{-2}$	$(2.4\pm1.3\pm0.2) imes10^{-4}$
$Z{ ightarrow} au au$	$3.93 \pm 0.42 \pm 0.32$	$(0.73 \pm 0.73 \pm 0.06) \times 10^{-2}$	$<(73\pm73\pm6)\times10^{-4}$
QCD	$12.7 \pm 0.2 \pm 3.8$	$(98 \pm 6 \pm 30) \times 10^{-2}$	$(340 \pm 110 \pm 100) \times 10^{-4}$
Total expected background	$18.0 \pm 0.5 \pm 3.8$	$1.01 \pm 0.06 \pm 0.30$	$0.051 \pm 0.015 \pm 0.010$
Observation	19	0	0
$pp \rightarrow \widetilde{t}_1 \widetilde{t}_1^*$			
$M = 500 \text{ GeV}, \langle c\tau \rangle = 1 \text{ mm}$	$30.1 \pm 0.7 \pm 1.1$	$6.54 \pm 0.34 \pm 0.24$	$1.34 \pm 0.15 \pm 0.05$
$M = 500 \text{ GeV}, \langle c\tau \rangle = 1 \text{ cm}$	$35.3 \pm 0.8 \pm 1.3$	$30.3 \pm 0.7 \pm 1.1$	$51.3 \pm 1.0 \pm 1.9$
$M = 500 \text{ GeV}, \langle c\tau \rangle = 10 \text{ cm}$	$4.73 \pm 0.30 \pm 0.17$	$5.57 \pm 0.32 \pm 0.20$	$26.27 \pm 0.70 \pm 0.93$

No excess

Displaced stops LIMITS

Phys. Rev. Lett. 114 (2015) 061801

"Displaced SUSY"

For a lifetime hypothesis of cτ = 2 cm, stops up to 790 GeV are excluded