RPV from Discrete R Symmetries

(and Recent Nucleon Decay Searches in Super-K)

Volodymyr Takhistov (UCI)

SUSY 2015

Lake Tahoe – August 25, 2015

Primarily based on: - M.-C. Chen, M. Ratz and V. Takhistov [NPB 819 (2015) 322; hep-ph/1410.3474]

Overview

- Problems of the MSSM
- "Fixing" the MSSM → **discrete symmetries**
- Properties of discrete symmetries
- Equivalent symmetries
- Algorithm for finding maximal discrete symmetry
- Survey of discrete symmetries for R-parity violating and conserving MSSM
- What else can we do with these symmetries ... ?

+ (if time permits) a word about recent nucleon decay searches at Super-Kamiokande

Problems of the MSSM

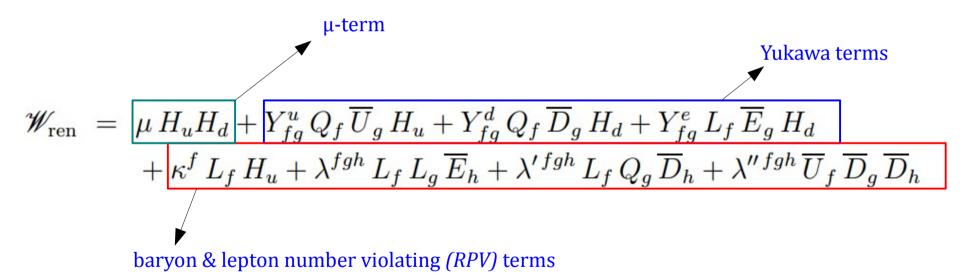
- SUSY well motivated
 - \rightarrow top down / "formally" (Haag's theorem, local SUSY \rightarrow gravity, strings)
 - → bottom up / "phenomenologically" (hierarchy problem, coupling unification, DM, etc.)

Problems of the MSSM

SUSY well motivated

 \rightarrow top down / "formally" (Haag's theorem, local SUSY \rightarrow gravity, strings)

- → bottom up / "phenomenologically" (hierarchy problem, coupling unification, DM, etc.)
- Minimal SUSY SM extension (*MSSM*) is attractive, with renormalizable superpotential

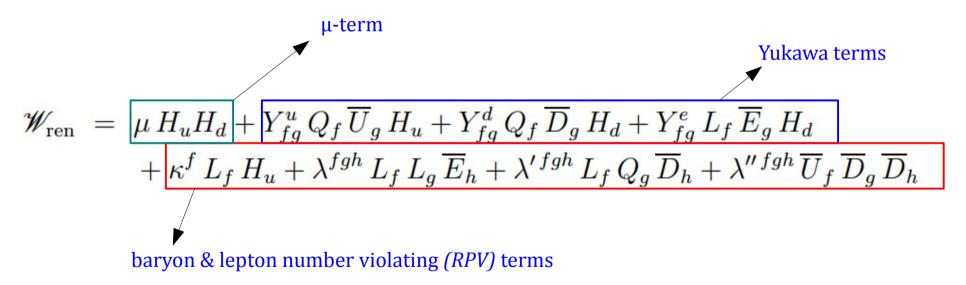


Problems of the MSSM

SUSY well motivated

 \rightarrow top down / "formally" (Haag's theorem, local SUSY \rightarrow gravity, strings)

- → bottom up / "phenomenologically" (hierarchy problem, coupling unification, DM, etc.)
- Minimal SUSY SM extension (*MSSM*) is attractive, with renormalizable superpotential



- Problems of the MSSM:
 - \rightarrow rapid proton decay (*RPV terms*) and μ problem

• Phenomenological constraints:

μ-term (EWSB): $\mu \sim 10^{-16} M_{Pl}$

Neutrino mass: $\kappa^i \leq 10^{-21} M_{Pl}$

Proton stability

$$\lambda' \lambda'' \leq 10^{-27}$$
$$\lambda' \lambda_3 \leq 10^{-10}$$
$$\lambda_1 \leq 10^{-8}, \lambda_2 \leq 10^{-8}$$

+ higher order RPV terms

 $\begin{array}{rcl}
\mathcal{O}_{1} &=& \left[Q \, Q \, Q \, L\right]_{F} , & \mathcal{O}_{2} &=& \left[\overline{U} \, \overline{U} \, \overline{D} \, \overline{E}\right]_{F} , \\
\mathcal{O}_{3} &=& \left[Q \, Q \, Q \, H_{d}\right]_{F} , & \mathcal{O}_{4} &=& \left[Q \, \overline{U} \, \overline{E} \, H_{d}\right]_{F} , \\
\mathcal{O}_{5} &=& \left[L \, H_{u} \, L \, H_{u}\right]_{F} , & \mathcal{O}_{6} &=& \left[L \, H_{u} \, H_{d} \, H_{u}\right]_{F} , \\
\mathcal{O}_{7} &=& \left[\overline{U} \, \overline{D}^{\dagger} \, \overline{E}\right]_{D} , & \mathcal{O}_{8} &=& \left[H_{u}^{\dagger} \, H_{d} \, \overline{E}\right]_{D} , \\
\mathcal{O}_{9} &=& \left[Q \, \overline{U} \, L^{\dagger}\right]_{D} , & \mathcal{O}_{10} &=& \left[Q \, Q \, \overline{D}^{\dagger}\right]_{D} ,
\end{array}$

• Phenomenological constraints:

µ-term (EWSB): $\mu \sim 10^{-16} M_{Pl}$

Neutrino mass: $\kappa^i \leq 10^{-21} M_{Pl}$

Proton stability

$$\begin{split} \lambda' \lambda'' &\leq 10^{-27} \\ \lambda' \lambda_3 &\leq 10^{-10} \\ \lambda_1 &\leq 10^{-8}, \ \lambda_2 \leq 10^{-8} \end{split}$$

+ higher order RPV terms

 $\begin{array}{rcl}
\mathcal{O}_{1} &=& \left[Q \, Q \, Q \, L\right]_{F} , & \mathcal{O}_{2} &=& \left[\overline{U} \, \overline{U} \, \overline{D} \, \overline{E}\right]_{F} , \\
\mathcal{O}_{3} &=& \left[Q \, Q \, Q \, H_{d}\right]_{F} , & \mathcal{O}_{4} &=& \left[Q \, \overline{U} \, \overline{E} \, H_{d}\right]_{F} , \\
\mathcal{O}_{5} &=& \left[L \, H_{u} \, L \, H_{u}\right]_{F} , & \mathcal{O}_{6} &=& \left[L \, H_{u} \, H_{d} \, H_{u}\right]_{F} , \\
\mathcal{O}_{7} &=& \left[\overline{U} \, \overline{D}^{\dagger} \, \overline{E}\right]_{D} , & \mathcal{O}_{8} &=& \left[H_{u}^{\dagger} \, H_{d} \, \overline{E}\right]_{D} , \\
\mathcal{O}_{9} &=& \left[Q \, \overline{U} \, L^{\dagger}\right]_{D} , & \mathcal{O}_{10} &=& \left[Q \, Q \, \overline{D}^{\dagger}\right]_{D} ,
\end{array}$

 Typically impose R-parity ("matter parity") [Farrar & Bayet (1978); Dimopoulos, Raby & Wilczek (1981)]

• Phenomenological constraints:

 μ -term (EWSB): $\mu \sim 10^{-16} M_{Pl}$

Neutrino mass: $\kappa^i \leq 10^{-21} M_{Pl}$

Proton stability

$$\begin{split} \lambda' \lambda'' &\leq 10^{-27} \\ \lambda' \lambda_3 &\leq 10^{-10} \\ \lambda_1 &\leq 10^{-8}, \ \lambda_2 \leq 10^{-8} \end{split}$$

+ higher order RPV terms

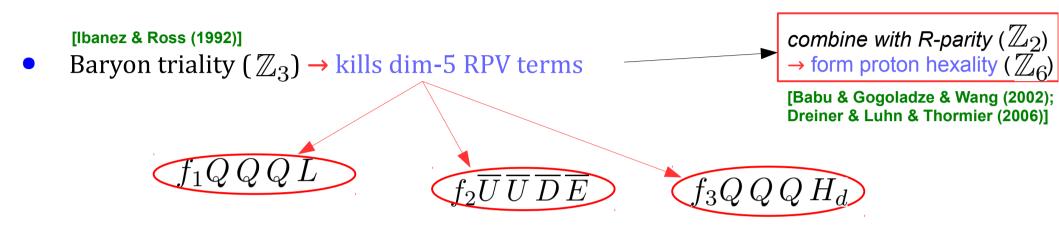
 $\begin{array}{rcl}
\mathcal{O}_{1} &=& \left[Q \, Q \, Q \, L\right]_{F} , & \mathcal{O}_{2} &=& \left[\overline{U} \, \overline{U} \, \overline{D} \, \overline{E}\right]_{F} , \\
\mathcal{O}_{3} &=& \left[Q \, Q \, Q \, H_{d}\right]_{F} , & \mathcal{O}_{4} &=& \left[Q \, \overline{U} \, \overline{E} \, H_{d}\right]_{F} , \\
\mathcal{O}_{5} &=& \left[L \, H_{u} \, L \, H_{u}\right]_{F} , & \mathcal{O}_{6} &=& \left[L \, H_{u} \, H_{d} \, H_{u}\right]_{F} , \\
\mathcal{O}_{7} &=& \left[\overline{U} \, \overline{D}^{\dagger} \, \overline{E}\right]_{D} , & \mathcal{O}_{8} &=& \left[H_{u}^{\dagger} \, H_{d} \, \overline{E}\right]_{D} , \\
\mathcal{O}_{9} &=& \left[Q \, \overline{U} \, L^{\dagger}\right]_{D} , & \mathcal{O}_{10} &=& \left[Q \, Q \, \overline{D}^{\dagger}\right]_{D} ,
\end{array}$

• Typically impose **R-parity** ("matter parity") [Farrar & Bayet (1978); Dimopoulos, Raby & Wilczek (1981)] \rightarrow discrete \mathbb{Z}_2 symmetry, kills $L H_u$ term and dim-4 RPV terms

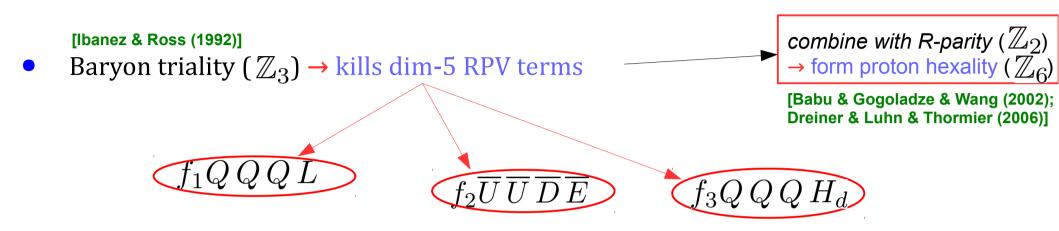
$$\mathcal{W}_{\text{ren}} = \mu H_u H_d + Y_{fg}^u Q_f \overline{U}_g H_u + Y_{fg}^d Q_f \overline{D}_g H_d + Y_{fg}^e L_f \overline{E}_g H_d$$
$$+ \kappa^f L_f H_u + \lambda^{fgh} L_f L_g \overline{E}_h + \lambda'^{fgh} L_f Q_g \overline{D}_h + \lambda''^{fgh} \overline{U}_f \overline{D}_g \overline{D}_h$$

• <u>dim-5 RPV terms and μ term?</u>

• <u>dim-5 RPV terms and μ term?</u>



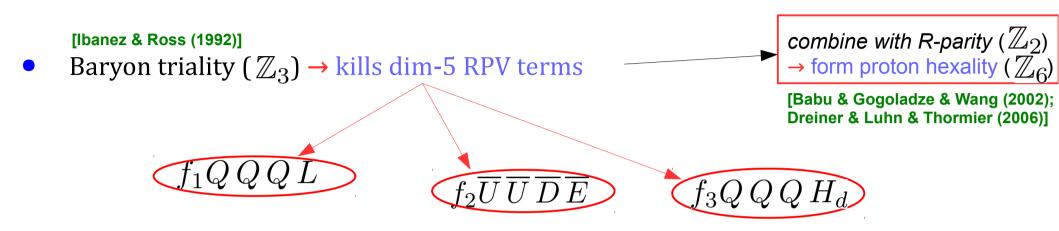
dim-5 RPV terms and μ term?



• \mathbb{Z}_N can't forbid μ -term \rightarrow need discrete R-symmetry \mathbb{Z}_N^R

(doesn't commute with SUSY, the sup. coordinate θ is charged, superpot. W has charge 2θ)

dim-5 RPV terms and μ term?

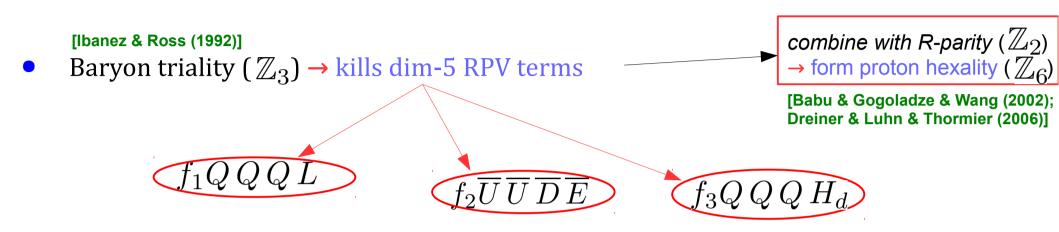


• \mathbb{Z}_N can't forbid μ -term \rightarrow need discrete R-symmetry \mathbb{Z}_N^R

(doesn't commute with SUSY, the sup. coordinate θ is charged, superpot. W has charge 2θ)

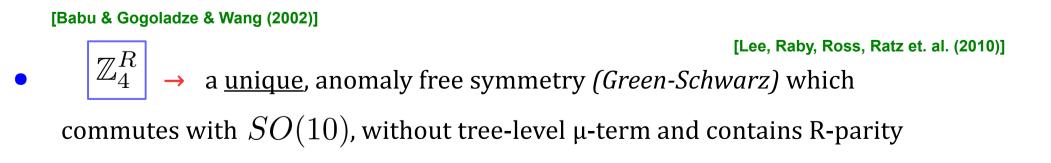
[Babu & Gogoladze & Wang (2002)]

dim-5 RPV terms and μ term?

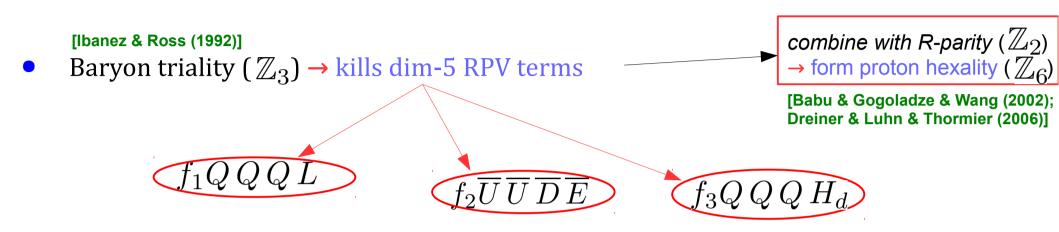


• \mathbb{Z}_N can't forbid μ -term \rightarrow need discrete R-symmetry \mathbb{Z}_N^R

(doesn't commute with SUSY, the sup. coordinate θ is charged, superpot. W has charge 2θ)



dim-5 RPV terms and μ term?



• \mathbb{Z}_N can't forbid μ -term \rightarrow need discrete R-symmetry \mathbb{Z}_N^R

(doesn't commute with SUSY, the sup. coordinate θ is charged, superpot. W has charge 2θ)

[Babu & Gogoladze & Wang (2002)] $\mathbb{Z}_{4}^{R} \rightarrow a \text{ unique, anomaly free symmetry (Green-Schwarz) which}$ commutes with SO(10), without tree-level μ -term and contains R-parity (also found w/o GS but with adding extra fields [Kurosawa, Maru, Yanagida (2001)])

08/25/15

Symmetry Properties & Anomaly Cancellation

• **<u>Origin</u>**: from broken continuous group $U(1)_R \to \mathbb{Z}_N^R$ or compactification remnant

Symmetry Properties & Anomaly Cancellation

- **<u>Origin</u>**: from broken continuous group $U(1)_R \to \mathbb{Z}_N^R$ or compactification remnant
- Must be **gauge** symmetry (quant. gravity \rightarrow no global symmetries) [Wilczek, Krauss (1989)]
 - → strongly constrained by anomalies

Symmetry Properties & Anomaly Cancellation

• **<u>Origin</u>**: from broken continuous group $U(1)_R \to \mathbb{Z}_N^R$ or compactification remnant

• Must be **gauge** symmetry (quant. gravity \rightarrow no global symmetries) [W

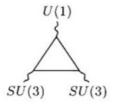
[Wilczek, Krauss (1989)]

→ strongly constrained by anomalies

• **Anomalies** (failure of maintaining the symmetry at quantum level)

OR

non-invariant path integral measure (Fujikawa method)



anom. coeff. for this diagram is 0 in SM

QM measure vs. classical measure

$$\mathcal{D}\psi'\mathcal{D}\overline{\psi'} = (\det J)^{-1} (\det \overline{J})^{-1} \mathcal{D}\psi\mathcal{D}\overline{\psi}.$$

 $\equiv \exp\left(i\int d^4x \alpha(x)\mathcal{A}(x)\right)$
 $\mathcal{A}(x) = \frac{1}{16\pi^2} \epsilon_{\mu\nu\rho\sigma} F_a^{\mu\nu}(x) F_b^{\rho\sigma}(x) \operatorname{tr}[tT^aT^b]$

anomaly coefficient

 \rightarrow usually set anomaly coefficient to 0 (SM)

08/25/15

• No gauge field for $\mathbb{Z}_N^R \rightarrow \text{can't draw "triangle" diagram}$

 \rightarrow use path integral to get coefficients $A_{G-G-\mathbb{Z}_N^R}$

• No gauge field for $\mathbb{Z}_N^R \rightarrow \operatorname{can't} \operatorname{draw}$ "triangle" diagram

 \rightarrow use path integral to get coefficients $A_{G-G-\mathbb{Z}_N^R}$

• **<u>Green-Schwarz (GS) mechanism</u>**: axion a coupled to field strengths

$$\mathcal{L} \supset -\frac{a}{8}F^a \tilde{F^a}$$

can absorb path integral shift from anomaly

$$\Delta \mathcal{L}_{\text{anomaly}} = \sum_{G} \frac{\alpha}{32\pi^2} F^a \tilde{F^a} A_{G-G-\mathbb{Z}_N}$$

into Lagrangian shift after axion transforms under the symmetry $a
ightarrow a + rac{\imath}{2} \Delta_{
m GS}$

$$\pi N \Delta_{\mathrm{GS}} \equiv A_{G-G-\mathbb{Z}_N} \mod N \quad \forall G$$

• No gauge field for $\mathbb{Z}_N^R \rightarrow \text{can't draw "triangle" diagram}$

 \rightarrow use path integral to get coefficients $A_{G-G-\mathbb{Z}_N^R}$

• **<u>Green-Schwarz (GS) mechanism</u>**: axion a coupled to field strengths

$$\mathcal{L} \supset -\frac{a}{8}F^a \tilde{F^a}$$

can absorb path integral shift from anomaly

$$\Delta \mathcal{L}_{\text{anomaly}} = \sum_{G} \frac{\alpha}{32\pi^2} F^a \tilde{F^a} A_{G-G-\mathbb{Z}_N}$$

into Lagrangian shift after axion transforms under the symmetry $a
ightarrow a + rac{\imath}{2} \Delta_{
m GS}$

$$\pi N \Delta_{\mathrm{GS}} \equiv A_{G-G-\mathbb{Z}_N} \mod N \quad \forall G$$

setting axion shift = anomaly \rightarrow anomaly is canceled, didn't require $A_{G-G-\mathbb{Z}_N^R} = 0$

• No gauge field for $\mathbb{Z}_N^R \rightarrow \operatorname{can't} \operatorname{draw}$ "triangle" diagram

 \rightarrow use path integral to get coefficients $A_{G-G-\mathbb{Z}_N^R}$

• **<u>Green-Schwarz (GS) mechanism</u>**: axion a coupled to field strengths

$$\mathcal{L} \supset -\frac{a}{8}F^a \tilde{F^a}$$

can absorb path integral shift from anomaly

$$\Delta \mathcal{L}_{\text{anomaly}} = \sum_{G} \frac{\alpha}{32\pi^2} F^a \tilde{F^a} A_{G-G-\mathbb{Z}_N}$$

into Lagrangian shift after axion transforms under the symmetry $a
ightarrow a + rac{i}{2} \Delta_{
m GS}$

$$\pi N \Delta_{\mathrm{GS}} \equiv A_{G-G-\mathbb{Z}_N} \mod N \quad \forall G$$

setting axion shift = anomaly \rightarrow anomaly is canceled, didn't require $A_{G-G-\mathbb{Z}_N^R} = 0$

• <u>Anomaly universality</u>: GS can cancel anomalies separately, but coupling unification and/or GUT requires universality $A_{G_i-G_i-\mathbb{Z}_N^R} = \rho \mod N$ [Chen, Ratz, Staud, Vaudrevange (2012)] $(\rho = 0 \text{ without GS})$

08/25/15

- No signs of SUSY at LHC, consider extended realizations
 - → R-parity Violation (*RPV*) (lots of literature, rich pheno.)

• No signs of SUSY at LHC, consider extended realizations

→ R-parity Violation (*RPV*) (lots of literature, rich pheno.)

• No signs of SUSY at LHC, consider extended realizations

→ R-parity Violation (*RPV*) (lots of literature, rich pheno.)

• [DHL] Dreiner, Hannusek and Luhn (2012) surveyed discrete RPV symmetries

→ many B and L violating solutions

• No signs of SUSY at LHC, consider extended realizations

→ R-parity Violation (*RPV*) (lots of literature, rich pheno.)

• [DHL] Dreiner, Hannusek and Luhn (2012) surveyed discrete RPV symmetries

→ many B and L violating solutions

... survey incomplete and many redundant solutions (only anomaly universal, no U(1) anomalies, assumed charge of $\theta = 1$, etc.)

Surveying Discrete Symmetries

• No signs of SUSY at LHC, consider extended realizations

 \rightarrow R-parity Violation (*RPV*) (lots of literature, rich pheno.)

- [DHL] Dreiner, Hannusek and Luhn (2012) surveyed discrete RPV symmetries
 - → many B and L violating solutions

... survey incomplete and many redundant solutions (only anomaly universal, no U(1) anomalies, assumed charge of $\theta = 1$, etc.)

We will provide:

- general criteria for identical symmetries \rightarrow identify redundancies
- novel algorithm for identifying maximal discrete symmetry
- models consistent with Pati—Salam group, some favoring Dirac neutrino mass
- minimal solutions of both RPV and R-parity conserving surveys
- a counter-example to statement in the literature regarding L-viol. symmetries

• Discrete symmetries may be equivalent \rightarrow redundancy

Discrete symmetries may be equivalent → redundancy

Criteria of equivalence for symmetry of order *N*:

- <u>Common divisors</u>: if symmetry order N and all the charges have a common divisor M, \mathbb{Z}_N^R is equivalent to $\mathbb{Z}_{N/M}^R$ with its charges divided by M - <u>Non-trivial centers</u>: in the presence of an SU(N) gauge factor, acting with the center of SU(N), the $Z_{SU(M)} \simeq \mathbb{Z}_M$, is an equivalent symmetry - <u>Hypercharge-shifts</u>: can add multiples of the hypercharge to respective field charges to obtain equivalent symmetries

- <u>**Coprime factors</u>**: multiplying all charges by a factor co-prime with the symmetry order *N* leads to the same symmetry</u>

less general criteria can be found in [Petersen, Ratz, Schieren (2009)]

• Under discrete symmetry, the field transforms $\phi \stackrel{\mathbb{Z}_N}{\mapsto} \mathrm{e}^{2\pi \,\mathrm{i}\,q/N} \phi$

• Under discrete symmetry, the field transforms $\phi \xrightarrow{\mathbb{Z}_N} e^{2\pi i q/N} \phi$ • Can parametrize the set of constraints as $\sum_{j=1}^{n_q} a_{ij} q_j = 0 \mod N$ $\forall 1 \le i \le n_c$

- Under discrete symmetry, the field transforms $\phi \stackrel{\mathbb{Z}_N}{\mapsto} e^{2\pi i q/N} \phi$
- Can parametrize the set of constraints as $\sum_{j=1}^{N_q} a_{ij} q_j = 0 \mod N$ $\forall 1 \le i \le n_c$ if system is overconstrainted \rightarrow no U(1) solution, but \mathbb{Z}_N^R solution is possible
- What is the **maximal** discrete symmetry for a set of constraints?

- Under discrete symmetry, the field transforms $\phi \xrightarrow[n_q]{\mathbb{Z}_N} e^{2\pi i q/N} \phi$
- Can parametrize the set of constraints as $\sum_{j=1}^{n} a_{ij} q_j = 0 \mod N$ $\forall 1 \le i \le n_c$ if system is overconstrainted \rightarrow no U(1) solution, but \mathbb{Z}_N^R solution is possible
- What is the **maximal** discrete symmetry for a set of constraints?
- With charges as variables, using *Smith form* can "diagonalize" constraint matrix

- d_{n_q} is the maximal meaningful order N
- <u>Bonus</u>: can also apply to inequality constraints

08/25/15

- Under discrete symmetry, the field transforms $\phi \stackrel{\mathbb{Z}_N}{\mapsto} \mathrm{e}^{2\pi \,\mathrm{i}\,q/N} \phi$
- Can parametrize the set of constraints as $\sum_{j=1}^{k} a_{ij} q_j = 0 \mod N$ $\forall 1 \le i \le n_c$ if system is overconstrainted \rightarrow no U(1) solution, but \mathbb{Z}_N^R solution is possible
- What is the **maximal** discrete symmetry for a set of constraints?
- With charges as variables, using *Smith form* can "diagonalize" constraint matrix

 $\blacktriangleright \quad U \cdot A \cdot V = D$ U. V – unimodular $A \cdot q = 0 \mod N$ matrices and $q = V \cdot \begin{pmatrix} k_1 \frac{d_{n_q}}{d_1} \\ \vdots \\ k_{n_q} \frac{d_{n_q}}{d_1} \end{pmatrix} \mod N$ where $D = \begin{pmatrix} a_1 \\ \ddots \\ d_{n_q} \end{pmatrix}$ applying the method has all other d_i as divisors - imposing SU(5) + Weinberg op. \rightarrow maximal order is 24 d_{n_q} is the maximal meaningful order N- imposing SO(10) + Weinberg op. \rightarrow maximal order is 4 Bonus: can also apply to inequality constraints (agreement with literature)

08/25/15

GUT compatibility:

– RPV in general not compatible with SU(5), SO(10)

($\overline{U}\overline{D}\overline{D}$ and $LL\overline{E}$ are allowed or forbidden simultaneously)

GUT compatibility:

- RPV in general not compatible with SU(5), SO(10)
- ($\overline{U}\overline{D}\overline{D}$ and $LL\overline{E}$ are allowed or forbidden simultaneously)
- partial unification of Pati—Salam $G_{PS} = SU(4) \times SU(2)_L \times SU(2)_R$ is allowed (not considered in previous surveys)

- don't enforce anomaly universality for Pati—Salam, since no single unifying gauge group \rightarrow PS doesn't predict coupling unification in general

Survey of the Solutions

• <u>Surveyed both (effective) RPC and RPV symmetries</u>

→ anomaly free (GS & regular, universal / non-universal), phenomenologically viable

• <u>Surveyed both (effective) RPC and RPV symmetries</u>

→ anomaly free (GS & regular, universal / non-universal), phenomenologically viable

Solutions:

- many solutions with Weinberg operator (Majorana neutrino mass)
- many RPV symmetries consistent with Pati—Salam
- found models (eg. \mathbb{Z}_{12}^R) "effectively" R-parity conserving and even order, but without R-parity
- confirmed through scan the unique R-parity conserving solution \mathbb{Z}_4^R
- + others (see paper for further details)

Surveyed both (effective) RPC and RPV symmetries

→ anomaly free (GS & regular, universal / non-universal), phenomenologically viable

Solutions:

- many solutions with Weinberg operator (Majorana neutrino mass)
- many RPV symmetries consistent with Pati—Salam
- found models (eg. \mathbb{Z}_{12}^R) "effectively" R-parity conserving and even order, but without R-parity
- confirmed through scan the unique R-parity conserving solution \mathbb{Z}_4^R
- + others (see paper for further details)
- Can identify some interesting features just from operators:

Example: for B-viol. found

 $\left. \begin{array}{c} \text{assume Pati-Salam compatibility} \\ \text{allow } \overline{U} \, \overline{D} \, \overline{D} \\ \text{forbid } L \, H_u \end{array} \right\} \curvearrowright \text{Forbid Weinberg operator } L \, H_u \, L \, H_u \\ \end{array} \right\}$

→ B-viol. models consistent with pheno + Pati—Salam prefer Dirac neutrino masses

• L-violating symmetries (L-viol. at renorm. level) are disfavored

 \rightarrow get $L H_u$ of μ -term size [Acharya, Kane et. al. (2014)]

• L-violating symmetries (*L-viol. at renorm. level*) are disfavored

 \rightarrow get $L H_u$ of μ -term size [Acharya, Kane et. al. (2014)]

• Avoid conclusion if require μ and L-viol. terms to arise after R symmetry breaking

• L-violating symmetries (L-viol. at renorm. level) are disfavored

 \rightarrow get $L H_u$ of μ -term size [Acharya, Kane et. al. (2014)]

- Avoid conclusion if require μ and L-viol. terms to arise after R symmetry breaking
- "non-perturbative" \mathbb{Z}_3^R
 - non-universal anomalies (can prove no solution with uni. anom.)

field	Q	\overline{U}	\overline{D}	L	\overline{E}	H_u	H_d	θ
\mathbb{Z}_3^R	1	1	1	1	1	0	0	1

- no B and L-viol. @ renormalizable level, only "non-perturbatively"
- \rightarrow assuming R symmetry breaking is of order $m_{3/2}$

$$\mathscr{W}_{\text{eff}} \supset \frac{m_{3/2}}{M_{\text{P}}} L L \overline{E} + \frac{m_{3/2}}{M_{\text{P}}} Q L \overline{D} + \frac{m_{3/2}}{M_{\text{P}}} \overline{U} \overline{D} \overline{D}$$

– LH_u is suppressed by $\,m_{3/2}^2/M_P\,$, but the μ term is of order $\,m_{3/2}\,$

• L-violating symmetries (L-viol. at renorm. level) are disfavored

 \rightarrow get $L H_u$ of μ -term size [Acharya, Kane et. al. (2014)]

- Avoid conclusion if require μ and L-viol. terms to arise after R symmetry breaking
- "non-perturbative" \mathbb{Z}_3^R
 - non-universal anomalies (can prove no solution with uni. anom.)

field	Q	\overline{U}	\overline{D}	L	\overline{E}	H_u	H_d	θ
\mathbb{Z}_3^R	1	1	1	1	1	0	0	1

- no B and L-viol. @ renormalizable level, only "non-perturbatively"
- \rightarrow assuming R symmetry breaking is of order $m_{3/2}$

$$\mathscr{W}_{\text{eff}} \supset \frac{m_{3/2}}{M_{\text{P}}} L L \overline{E} + \frac{m_{3/2}}{M_{\text{P}}} Q L \overline{D} + \frac{m_{3/2}}{M_{\text{P}}} \overline{U} \overline{D} \overline{D}$$

- LH_u is suppressed by $\,m_{3/2}^2/M_P\,$, but the μ term is of order $\,m_{3/2}\,$
- \rightarrow <u>counter-example to statement</u>: in L-viol. RPV they are <u>always</u> of same size

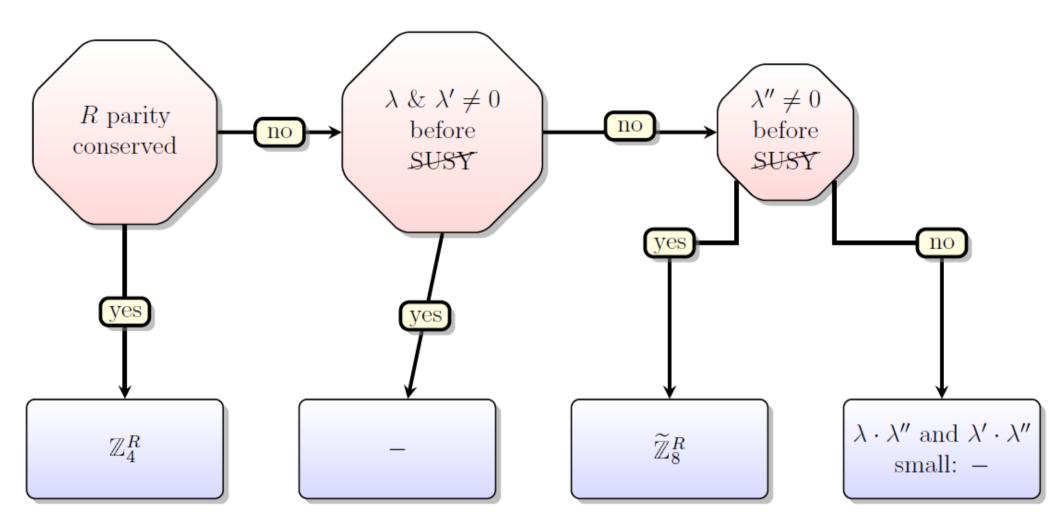


Figure 1: Summary of our results. We present the simplest discrete R symmetries with universal anomalies and the specified properties. The symbol "–" indicates the absence of a solution.

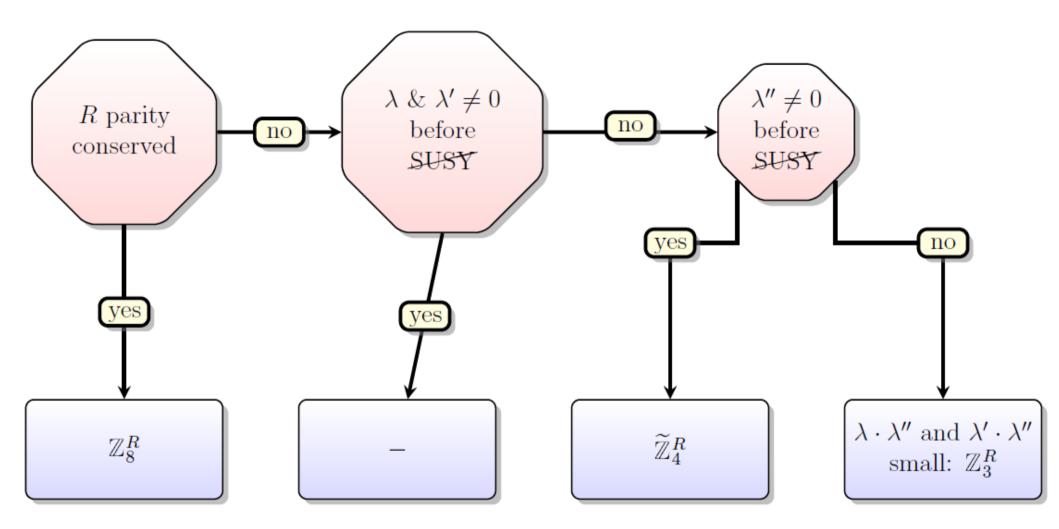


Figure 2: Summary of our results. We present the simplest discrete R symmetries with non–universal anomalies and the specified properties. The symbol "–" indicates the absence of a solution.

With flavor symmetry:

- anomalous U(1) always present after compactification
- long history of using it as flavor symmetry [Binetruy, Ramond (1994)]

(introduce flavon(s), U(1) charges determine how many flavons couple to

different Yukawas, after flavon gets vev different Yukawa "textures" emerge)

- combine baryon triality \mathbb{Z}_3 and U(1) flavor: $U(1)_R \to \mathbb{Z}_3$ [Dreiner, Luhn, Murayama, Thormier (2008)]
- combine nice \mathbb{Z}_4^R and U(1) flavor: $U(1)_R o \mathbb{Z}_4^R$ [Dreiner, Opferkuch, Luhn (2014)]
- use \mathbb{Z}_N^R directly as flavor symmetry [Babu, Gogoladze, Wang (2002)]

With flavor symmetry:

- anomalous U(1) always present after compactification
- long history of using it as flavor symmetry [Binetruy, Ramond (1994)]

(introduce flavon(s), U(1) charges determine how many flavons couple to

different Yukawas, after flavon gets vev different Yukawa "textures" emerge)

- combine baryon triality \mathbb{Z}_3 and U(1) flavor: $U(1)_R \to \mathbb{Z}_3$ [Dreiner, Luhn, Murayama, Thormier (2008)]
- combine nice \mathbb{Z}_4^R and U(1) flavor: $U(1)_R o \mathbb{Z}_4^R$ [Dreiner, Opferkuch, Luhn (2014)]
- use \mathbb{Z}_N^R directly as flavor symmetry [Babu, Gogoladze, Wang (2002)]

With baryogenesis:

– decay of heavy baryon scalar which dominates before nucleosynthesis is a source of both cold DM and baryon asymmetry, model given by $\mathbb{Z}_9 \times \mathbb{Z}_2$ [Kitano, Murayama, Ratz (2002)]

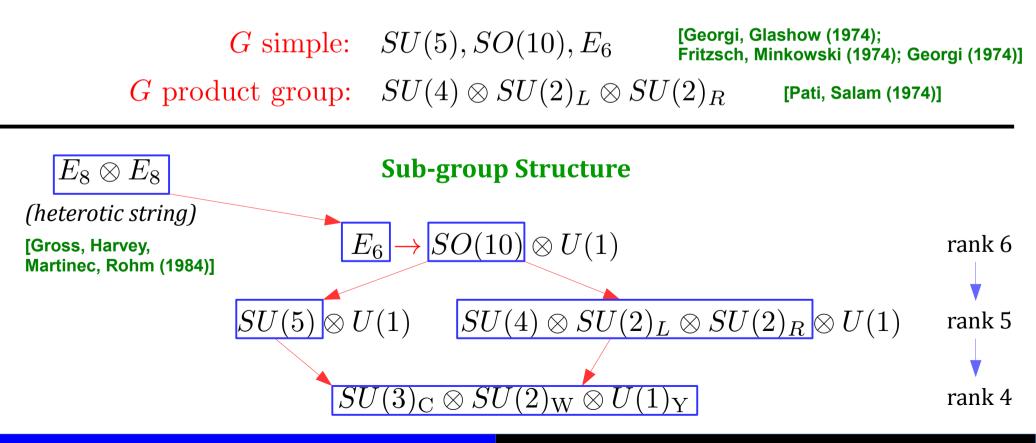
(... some work in progress)

Seen how constraining proton decay to model building is, so

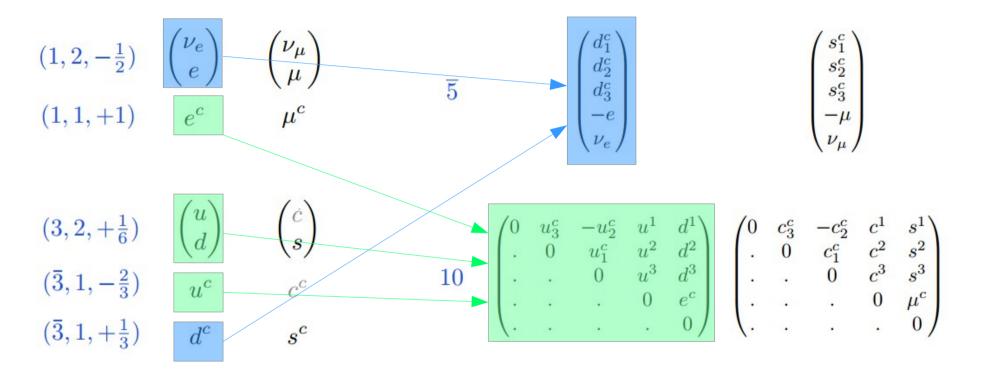
... a brief word about

recent nucleon decay searches at Super-K

- Can unify 3 seeming unrelated forces of the SM into 1 simple Lie group $SU(3)_{
 m C}\otimes SU(2)_{
 m W}\otimes U(1)_{
 m Y} o G$
- **Many hints**: gauge coupling "unification" at high energies, charge is quantized, quark and lepton mixing patterns seem to have some structure, etc. *(inflation?)*
- Most promising candidates (anomaly free, rank ≥ 4, contain SM as subgroup):



• Particle content of the SM fits into $\overline{5}$, 10 of SU(5)



- Gauge and Higgs sectors fit into $24, \overline{5}$ of SU(5) (new g. bosons X, Y and H. triplet T)
- Even better with SO(10) 16 of SO(10) contains all SM particles + rh. ν
- Many great features

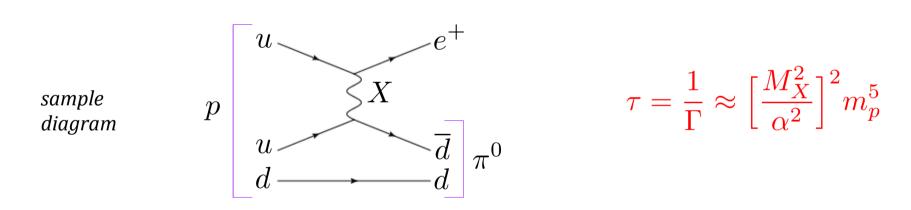
...but GUT scale ~10^(16) GeV, colliders can't reach

...but proton decay can!

Proton Decay: non-SUSY GUTs

- In non-SUSY models, such as minimal SU(5), proton decay originates from dim-6 operators: $\frac{QQQL}{\Lambda^2}, \frac{\overline{U}\overline{U}\overline{E}\overline{D}}{\Lambda^2}, \frac{\overline{U}\overline{E}QQ}{\Lambda^2}, \frac{\overline{D}\overline{U}QL}{\Lambda^2}$
- The typical dominant non-SUSY decay channel is $p
 ightarrow e^+ \pi^0$

→ mediated by GUT gauge bosons X and Y, can also be by GUT color triplet Higgs T (*limit on this leads to the doublet-triplet splitting problem*)

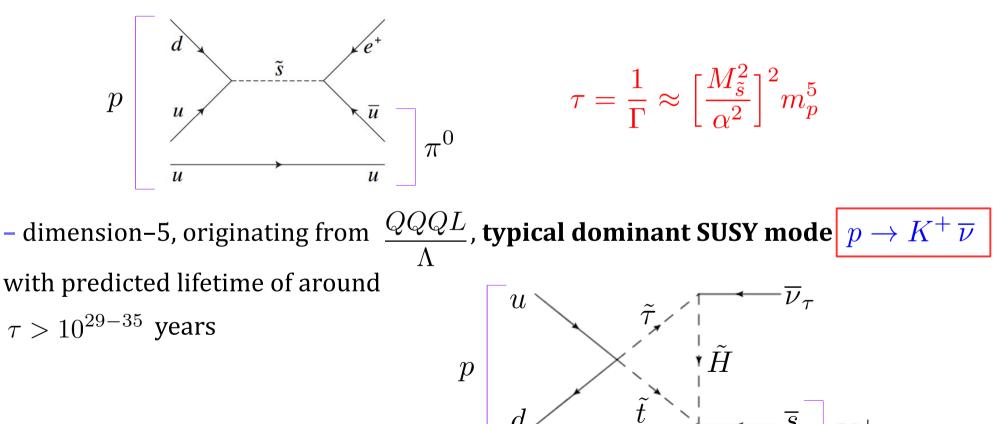


• For minimal *SU(5)*, predicted lifetime is $\tau > 10^{29\pm2}$ years

ightarrow ruled out by experiment with $au > 10^{34}$ years [Nishino et. al. (Super-K) (2012)]

Proton Decay: SUSY GUTs

- SUSY pushes up unification scale $\rightarrow \tau(p \rightarrow e^+\pi^0) > 10^{35-38}$ years
- Sparticles present → new decays start to dominate
 - dimension–4, originating from operators $LQ\overline{D}, \overline{U}\overline{D}\overline{D}$
 - $\rightarrow \tau \sim 1s$ if squark mass ~ TeV, forbidden by *R* parity



Searching for Proton Decay: Water Cherenkov Detectors

 To see if proton lives longer than 10³¹ years, can either look at 1 proton for 10³² years ... OR ... look at 10³³ protons (~10 kiloton) for 1 month
 → large underground detectors → water Cherenkov detectors, cheap + large

- (1979) Irvine–Michigan–Brookhaven (IMB)
 - no proton found, limit $au(p
 ightarrow e^+ \pi^0) > 10^{32}$ years (1990)
 - saw SN1987A neutrinos and atmospheric neutrino "anomaly" (later oscillations)
- (1980~) Kamiokande

- saw SN1987A neutrinos and atmospheric
 neutrino "anomaly", solar neutrinos
 Koshiba's Nobel Prize (2002)

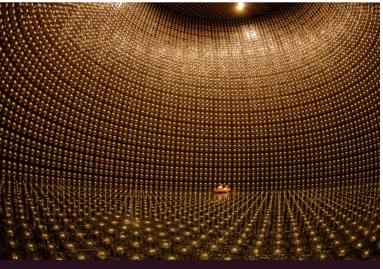
IMB experiment

Searching for Proton Decay: Water Cherenkov Detectors

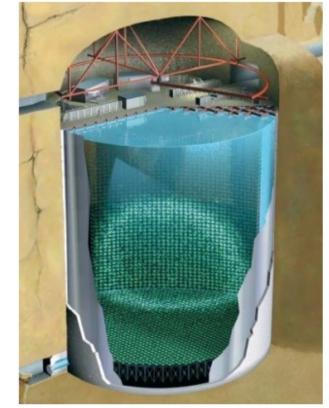
- (1996) Super–Kamiokande (SK)
 - largest water-C. detector, successor of Kamiokande
 - discovery of neutrino oscillations (1998)
 - → neutrinos have mass
 - lifetime of proton

$$\tau(p \rightarrow e^+ \pi^0) > 10^{34} \ \ \, {\rm years}$$

SK experiment



from Super-K Webpage / Ed Kearns, NEPPRS 09



Super-Kamiokande

22.5 kton fiducial volume 7.5×10³³ p + 6×10³³ n

SK-I: 1996 - 2001 11146 50-cm inner PMTs , 40% coverage 1885 20-cm outer PMTs

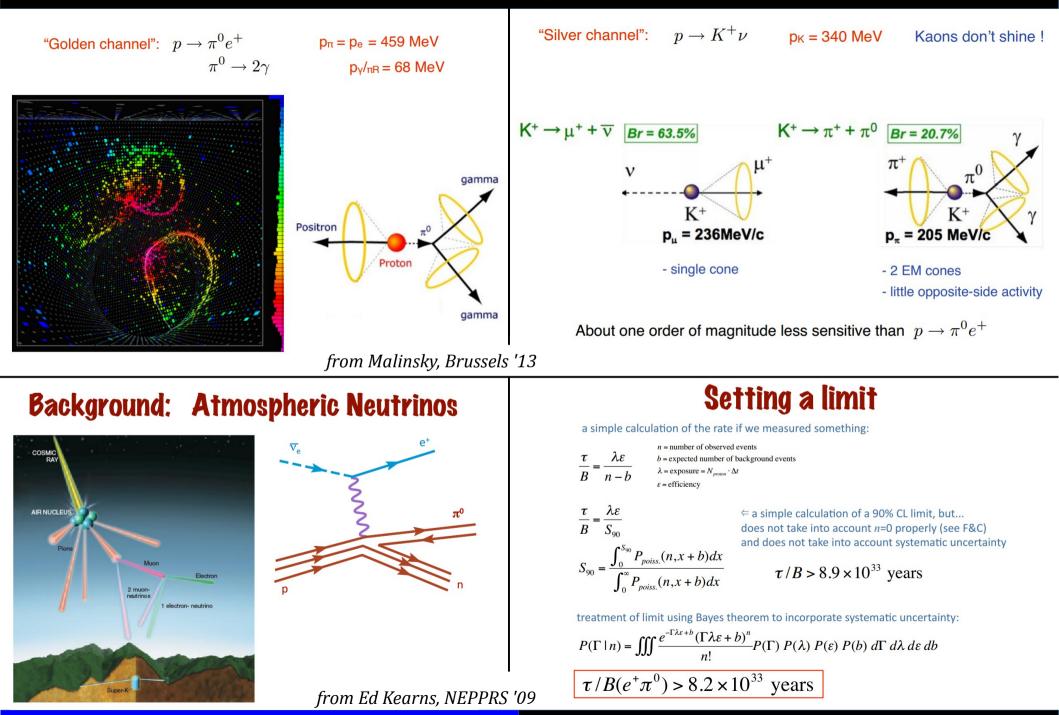
SK-II: Jan 2003 - Oct 2005

Recovery from accident 5182 50-cm inner PMTs Acrylic + FRP protective Outer detector fully restored

SK-III: May 2006 - August 2008 Restored 40% coverage Outer detector segmented (top | barrel | bottom)

SK-IV: September 2008 -SK-IV Replace all electronics – 2008 T2K beam – late 2009 Add gadolinium - 201?

Proton Decay at Super-Kamiokande



Story is Actually More Complex ...

- Proton decay hasn't been found in \sim 30 years, why continue looking?
- Many models beyond simple *SU(5)*, proton decay can rule some of them out ...

Model	Ref.	Modes	τ_N (years)
Minimal $SU(5)$	Georgi, Glashow [2]	$p \rightarrow e^+ \pi^0$	$10^{30} - 10^{31}$
Minimal SUSY $SU(5)$	Dimopoulos, Georgi [11], Sakai [12]	$p \rightarrow \bar{\nu}K^+$	
	Lifetime Calculations: Hisano,	$n \rightarrow \bar{\nu} K^0$	$10^{28} - 10^{32}$
	Murayama, Yanagida [13]		
SUGRA $SU(5)$	Nath, Arnowitt [14, 15]	$p \rightarrow \bar{\nu}K^+$	$10^{32} - 10^{34}$
SUSY $SO(10)$	Shafi, Tavartkiladze [16]	$p \rightarrow \bar{\nu}K^+$	
with anomalous		$n \rightarrow \bar{\nu} K^0$	$10^{32} - 10^{35}$
flavor $U(1)$		$p \rightarrow \mu^+ K^0$	
SUSY $SO(10)$	Lucas, Raby [17], Pati [18]	$p \rightarrow \bar{\nu}K^+$	$10^{33} - 10^{34}$
MSSM (std. $d = 5$)		$n \rightarrow \bar{\nu} K^0$	$10^{32} - 10^{33}$
SUSY $SO(10)$	Pati [18]	$p \rightarrow \bar{\nu}K^+$	$10^{33} - 10^{34}$
ESSM (std. $d = 5$)			$\lesssim 10^{35}$
SUSY $SO(10)/G(224)$	Babu, Pati, Wilczek [19, 20, 21],	$p \rightarrow \bar{\nu}K^+$	$\lesssim 2 \cdot 10^{34}$
MSSM or ESSM	Pati [18]	$p \rightarrow \mu^+ K^0$	
$(new \ d = 5)$		B	$\sim (1 - 50)\%$
SUSY $SU(5)$ or $SO(10)$	Pati [18]	$B \cdot p \rightarrow e^+ \pi^0$	$\sim 10^{34.9\pm1}$
MSSM $(d = 6)$			
Flipped $SU(5)$ in CMSSM	Ellis, Nanopoulos and Wlaker[22]	$p \rightarrow e/\mu^+ \pi^0$	$10^{35} - 10^{36}$
Split $SU(5)$ SUSY	Arkani-Hamed, et. al. [23]	$p \rightarrow e^+ \pi^0$	$10^{35} - 10^{37}$
SU(5) in 5 dimensions	Hebecker, March-Russell[24]	$p \rightarrow \mu^+ K^0$	$10^{34} - 10^{35}$
		$p \rightarrow e^+ \pi^0$	
SU(5) in 5 dimensions	Alciati et.al.[25]	$p \rightarrow \bar{\nu}K^+$	$10^{36} - 10^{39}$
option II			
GUT-like models from	Klebanov, Witten[26]	$p \rightarrow e^+ \pi^0$	$\sim 10^{36}$
Type IIA string with D6-branes			

[Bueno (2007)]

TABLE I: Summary of the expected nucleon lifetime in different theoretical models.

..... many predicted modes

B + L
$\Delta B = 2$, TeV < scale < GUT
$\lambda'_{\rm uds} < 10^{-8}$
6 dimensions
invisible
radiative from Ed Kearns, NEPPRS '09

Many predictions in the $\tau \approx 10^{34-36}$ year range

... are we on the verge of discovery (*Super–K*, or near future Hyper–K)?

Some Novel SK Searches

- Minimal *SU(5)* and SUSY *SU(5)* ~ *ruled out by experiment*
- Can consider larger group, eg. $SO(10) \rightarrow Pati-Salam$
- In certain variations trilepton modes can be significant
 - \rightarrow maybe also useful for baryogenesis [Gu and Sarkar (2012)]:

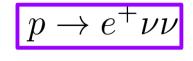
 \rightarrow predicted lifetimes $\,\tau\approx 10^{31-33}$ years $\,$ [Pati (1984), Gu and Sarkar (2012)]:

• First 3-body decay search in SK

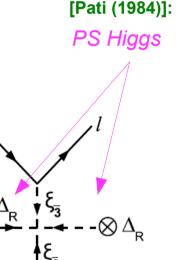
• In SK can't see neutrinos, only spectra from e+, μ + (can use $\mu \rightarrow \text{evv}$ spectra to describe the above) Chen, Takhistov [PRD (2014)]

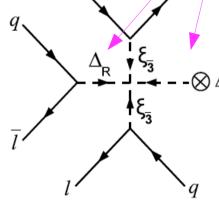
- Spectral fit analysis
 - \rightarrow set limit ~ 10^32 years (>1 order improvement)

Takhistov et. al. (Super-K Collab.) [PRL (2014)]



$$p \to \mu^+ \nu \nu$$





Some Novel SK Searches

<u>Other modes</u> which can be similarly analyzed (*spectral fit to momenta*):

- $p \to e^+ X \mid p \to \mu^+ X$ inclusive decays (X is invisible particle)
- $n
 ightarrow \gamma
 u$ radiative mode [Nath and Perez (2007)]:
- $np \to e^+ \nu$ $np \to \mu^+ \nu$ $np \to \tau^+ \nu$ dinucleon decays, which can arise in

models with extended Higgs sector, may be connected to baryogenesis

Results for SK search of nucleon decay modes with charged lepton + inv.:

Takhistov et. al. (Super-K Collab.) (accepted to PRL)

Mode	SK I-IV Sensitivity	(years)	SK I-IV Limit (years)	PDG Limit (years)
$p \rightarrow e^+ X$	$7.9 \cdot 10^{32}$		$7.9 \cdot 10^{32}$	—
$p \to \mu^+ X$	$7.7 \cdot 10^{32}$		$4.1 \cdot 10^{32}$	—
$n ightarrow \nu \gamma$	$5.8 \cdot 10^{32}$	in	$5.5 \cdot 10^{32}$	$2.8 \cdot 10^{31}$
$np \rightarrow e^+ \nu$	$9.9 \cdot 10^{31}$	arer	$2.6 \cdot 10^{32}$	$2.8 \cdot 10^{30}$
$np \to \mu^+ \nu$	$1.1 \cdot 10^{32}$		$2.2 \cdot 10^{32}$	$1.6 \cdot 10^{30}$
$np \to \tau^+ \nu$	$1.1 \cdot 10^{31}$		$2.9 \cdot 10^{31}$	
C				

not in PDG, first ever search

08/25/15

[Arnellos Marciano (1982), Arnold, Fornal, Wise (2013); Bryman (2014)]:

Other Recent SK Searches

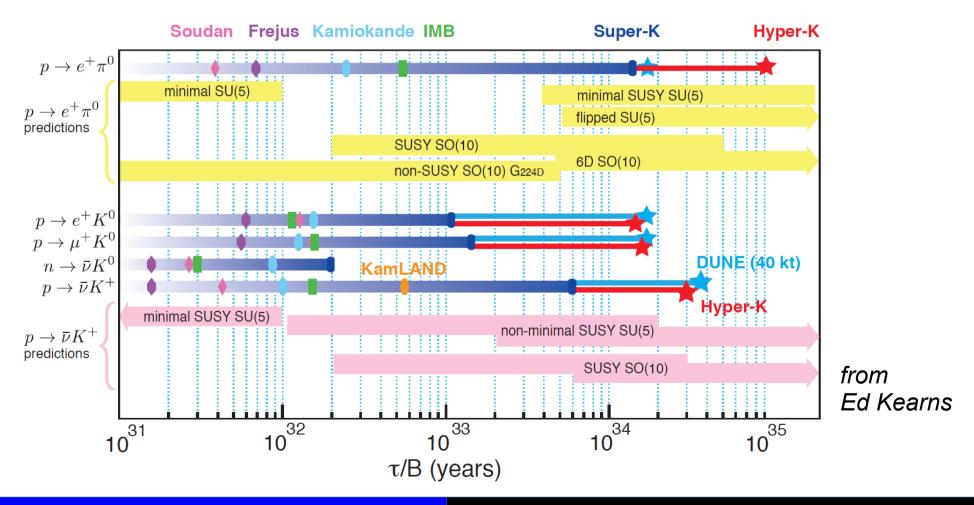
$$pp
ightarrow \pi^+ \pi^+$$
 [Gustafson et. al. (2015)]:
 $n
ightarrow
u \pi^0$ [Abe et. al. (2014)]:
 $p
ightarrow
u \pi^+$ [Abe et. al. (2014)]:
 $pp
ightarrow K^+ K^+$ [Litos et. al. (2014)]:

....

Future

- HyperK is bigger version of SuperK (20 x SK size)
- aside mass hierarchy and CP violation also improved proton decay search

(1st proto-collaboration meeting June 2015)



Thank You!