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TWO BIRDS...
• The Higgs is a light, fundamental scalar, how did this happen?

• Supersymmetric model building is already difficult, with no 
promising hints

• What about other light fields?

• Inflation may be at a high scale (chaotic inflation): how are higher 
dimensional operators suppressed?

• There are also fundamental questions, like the origin of the 
inflaton potential and the large field values
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...ONE STONE
• A light boson is characteristic of a broken symmetry: 

the Higgs could be a (pseudo-)Nambu-Goldstone boson

• A shift symmetry is necessary for a flat high scale 
inflationary potential

• Is there a natural way to combine these?

• What about large field values?
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SOLUTION:
A NONLINEAR SIGMA MODEL 
COUPLED TO SUPERGRAVITY

For our earlier work on sigma models for charge quantization and 
quantum number relations in nonlinear sigma models

see arXiv:1309.0692, 1312.6889
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TURN THAT PAPER SIDEWAYS
• The structure of the supergravity potential is why it is 

difficult to construct models of chaotic inflation: the 
potential has an exponential factor of 

• Thus fields cannot have field values larger than Mp

• The solution from KYY [1] is to use a shift symmetry: 

• Then the exponential factor does not contain the 
imaginary part of the field and the potential is exactly flat

eK/M2p

� � � + iCMp � K (� + ��)
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IF IT WERE EASY, IT WOULDN’T BE 
SUPERGRAVITY

• It is well known that it is difficult to couple a NLSM to 
supergravity (e.g. [2, 3, 4])

• A compact model cannot be coupled to supergravity [2]

• The Kähler potential is not invariant in local supersymmetry: 

• Komargodski-Seiberg (KS [3]) : we need an extra field which 
comes with a shift symmetry: 

• Kugo-Yanagida (KY [4]): we need to break any U(1) factors

K(�, �†) � K(�, �†) + g(�) + g†(�†)

K(�, �†) + Z+ Z�
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• We use the non-compact model  

[5]

• The unbroken subgroup is gauged as the electroweak group of the SM

• There is an SU(2) NGB doublet with the quantum numbers of the 
Higgs 

• There is a field, Z, with a shift symmetry which can be the inflaton

U(3)/SU(2)× U(1) ∼= SU(3)/SU(2)
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A MODEL CITIZEN
• We use the non-compact model  

[5]

• The unbroken subgroup is gauged as the electroweak group of the SM

• There is an SU(2) NGB doublet with the quantum numbers of the 
Higgs 

• There is a field, Z, with a shift symmetry which can be the inflaton

• There is an equivalence between this model and the previous Kähler 
potential [for SU(3)/SU(2) x U(1)], and an explicit connection between the 
different ways of understanding NLSMs in supergravity

U(3)/SU(2)× U(1) ∼= SU(3)/SU(2)
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THE ORIGIN STORY
• Where does Z come from?

• In KS it is an extra matter field, but in KY we can think of it as the NGB from 
the broken U(1)

• In fact, the U(1) must be broken (Jacobi identity) in KS: symmetry and 
degrees of freedom match

• Alternatively, in the U(3) model Z is a quasi-NGB

• In supersymmetry symmetry groups are naturally complexified

• The number of NG modes is generically doubled

• This allows one to connect to a linear sigma model
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EAT YOUR VEGGIES
• How can we explain field values larger than Mp?

• One known model is the Witten-Bagger [2]      
models (or other manifold)

• This is a compact NLSM with radius quantized in 
units of Mp

• Can there be a relation between these different ways 
of coupling a NLSM to supergravity?

CP1
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A PROPOSAL
• Consider a Witten-Bagger model as one branch of the theory, 

and the other as the KSKY model

• One branch has a quantized radius, a U(1), and free field, 
while the other is non-compact/broken U(1) and a field 
which transforms under Kähler transformations 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A PROPOSAL
• Consider a Witten-Bagger model as one branch of the theory, 

and the other as the KSKY model

• One branch has a quantized radius, a U(1), and free field, 
while the other is non-compact/broken U(1) and a field 
which transforms under Kähler transformations 
 

• One branch explains the large field values, while the other 
explains the shift symmetry and extra field
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SUMMARY AND CONCLUSIONS
• We have a general model-building framework which simultaneously gives light 

fields and chaotic inflation

• Other models based on E7 have light quarks and an axion as well (with a 
relation between the up Yukawa coupling and the inflaton mass)

• The structure of NLSMs and supergravity was crucial and with no additional ad 
hoc ingredients

• Along the way we have understood and connected different proposals for 
coupling to supergravity: extra fields/extended supergravity multiplet, broken 
U(1)s, quasi-NGBs

• Finally, we have conjectured a link to Witten-Bagger models and an origin for 
large field values (string theory realization?)
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Our work:  
S. Hellerman, J. Kehayias, and T. T. Yanagida, “Charge quantization in the CP(1) non-linear σ-model,” Phys. Lett. B728, 
358–362 (2014), arXiv:1309.0692 [hep-th]; 
“Charge Quantization and the Standard Model from the CP2 and CP3 Nonlinear σ-Models,” Phys. Lett. B731, 
148–153 (2014), arXiv:1312.6889 [hep-th]; 
“Chaotic Inflation from Nonlinear Sigma Models in Supergravity,” Phys. Lett. B742, 390-393 (2015), arXiv:
1411.3720 [hep-ph].
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“Chaotic Inflation from Nonlinear Sigma Models in Supergravity,” Phys. Lett. B742, 390-393 (2015), arXiv:
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• Call the SU(2) doublet         and singlet  

• With the matrix                            we can construct a  
 
U(3) invariant Kähler potential  

� �

�

�
e�Z 0
0 e�Z

�1 �2

�

� , (1)

K = �F(det �†�)

�1, �2 Z
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(EXTRA) SOME DETAILS
• Call the SU(2) doublet         and singlet  

• With the matrix                            we can construct a  
 
U(3) invariant Kähler potential  

• This is a function of                                                   
or (after a field redefinition) 

� �

�

�
e�Z 0
0 e�Z

�1 �2

�

� , (1)

K = �F(det �†�)

e2�(Z+Z†) + e�(Z+Z†)
�
|�1|2 + |�2|2

�

�1, �2 Z

x = e2�(Z+Z†)
�
1+ ��

i�
�†
i

�
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(EXTRA) CONNECTIONS
• Once we define  

we see we reproduce the form of the Kähler potential 
in KS [3] for a                                    model

y � log x = log
�
1+ ��

i�
�†
i

�
+ 2�

�
Z + Z†�

CP2 �= SU(3)/SU(2) � U(1)
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(EXTRA) CONNECTIONS
• Once we define  

we see we reproduce the form of the Kähler potential 
in KS [3] for a                                    model

• The group structure and counting of flat directions is 
the same — the Jacobi identity shows the U(1) is 
broken

y � log x = log
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�†
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�
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(EXTRA) CONNECTIONS
• Once we define  

we see we reproduce the form of the Kähler potential 
in KS [3] for a                                    model

• The group structure and counting of flat directions is 
the same — the Jacobi identity shows the U(1) is 
broken

• This is exactly the condition given in Kugo-Yanagida [4]

y � log x = log
�
1+ ��

i�
�†
i

�
+ 2�

�
Z + Z†�

CP2 �= SU(3)/SU(2) � U(1)
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(EXTRA) MAKING AN OMELET
• To actually have a chaotic inflation potential we need to 

break this shift symmetry [1]

• Add a superpotential 

•     must be small (              ), but is technically natural

• What about the allowed term     ? Unless this is small, inflation 
will not end

• In this model this is not a problem, it is simply a scaling in   or

W = mXZ

cX

m � 10�5Mp

� �


