Direct and indirect detection of sneutrino dark matter

Chiara Arina

SUSY 2015 August 23 - 29 Lake Tahoe, California

• CA, M.E. Cabrera, S. Kraml, S. Kulkarni and U. Laa, JHEP 1505 (2015)

• CA, S. Kulkarni and J. Silk, arXiv: 1506.08202 [astro-ph.HE]

Outline

- Why sneutrino as Dark Matter (DM) candidate?
- Model parameter space compatible with DM constraints
- Indirect detection of sneutrino DM: neutrino line feature
 - Estimate in a simplified model
 - Results for the MSSM+RN sample
- Conclusions

Sneutrino can not be DM in the MSSM

Sneutrino is the superpartner of the left-handed (LH) neutrino: is a SU(2)_L doublet $(Y=1 \longrightarrow couples to the Z boson)$

MSSM + Right-handed Neutrinos (MSSM+RN)

Inclusion of neutrino mass terms modify scalar sector as well:

$$W = \epsilon_{ij} (\mu \hat{H}_i^u \hat{H}_j^d - Y_l \hat{H}_i^d \hat{L}_j \hat{R} + Y_\nu \hat{H}_i^u \hat{L}_j \hat{N})$$

$$V_{\text{soft}} = M_L^2 \tilde{L}_i^* \tilde{L}_i + M_N^2 \tilde{N}^* \tilde{N} - [\epsilon_{ij} (\Lambda_l H_i^d \tilde{L}_j \tilde{R} + \Lambda_\nu H_i^u \tilde{L}_j \tilde{N}) + \text{h.c.}]$$

Dirac masses for neutrinos: $m_D = v_u Y_{\nu}$

Sneutrino left and right components mix:

$$\begin{cases} \tilde{\nu}_{\tau_1} = -\sin\theta_{\tilde{\nu}} \ \tilde{\nu}_L + \cos\theta_{\tilde{\nu}} \ \tilde{N} \\ \tilde{\nu}_{\tau_2} = +\cos\theta_{\tilde{\nu}} \ \tilde{\nu}_L + \sin\theta_{\tilde{\nu}} \ \tilde{N} \end{cases}$$

$$\mathcal{M}^2_{LR} = egin{pmatrix} m_L^2 + rac{1}{2}m_Z^2\cos(2eta) + m_D^2 & rac{v}{\sqrt{2}}A_{ ilde{
u}}\sineta - \mu m_D\mathrm{cotg}eta \ & rac{v}{\sqrt{2}}A_{ ilde{
u}}\sineta - \mu m_D\mathrm{cotg}eta & m_N^2 + m_D^2 \end{pmatrix}$$

Sneutrino LSP models address two issues at once: DM and neutrino masses

MSSM + Right-handed Neutrinos (MSSM+RN)

Inclusion of neutrino mass terms modify scalar sector as well:

$$W = \epsilon_{ij} (\mu \hat{H}_i^u \hat{H}_j^d - Y_l \hat{H}_i^d \hat{L}_j \hat{R} + Y_\nu \hat{H}_i^u \hat{L}_j \hat{N})$$

$$V_{\text{soft}} = M_L^2 \tilde{L}_i^* \tilde{L}_i + M_N^2 \tilde{N}^* \tilde{N} - [\epsilon_{ij} (\Lambda_l H_i^d \tilde{L}_j \tilde{R} + \Lambda_\nu H_i^u \tilde{L}_j \tilde{N}) + \text{h.c.}]$$

Dirac masses for neutrinos:

$$m_D = v_u Y_\nu$$

LSP

Sneutrino left and right components mix:

$$\begin{pmatrix} \tilde{\nu}_{\tau_1} = -\sin \theta_{\tilde{\nu}} \ \tilde{\nu}_L + \cos \theta_{\tilde{\nu}} \ \tilde{N} \\ \tilde{\nu}_{\tau_2} = +\cos \theta_{\tilde{\nu}} \ \tilde{\nu}_L + \sin \theta_{\tilde{\nu}} \ \tilde{N} \end{cases}$$

$$\mathcal{M}_{LR}^2 = egin{pmatrix} m_L^2 + rac{1}{2}m_Z^2\cos(2eta) + m_D^2 & rac{v}{\sqrt{2}}A_{ ilde{
u}}\sineta - \mu m_D\mathrm{cotg}eta \ & rac{v}{\sqrt{2}}A_{ ilde{
u}}\sineta - \mu m_D\mathrm{cotg}eta & m_N^2 + m_D^2 \end{pmatrix}$$

Sneutrino LSP models address two issues at once: DM and neutrino masses

MSSM+RN model parameters

 $M_1, M_2, M_3, \boldsymbol{m_L}, \boldsymbol{m_R}, \boldsymbol{m_N}, \boldsymbol{m_Q}, \boldsymbol{m_H}, \boldsymbol{A_l}, \boldsymbol{A_{\tilde{\nu}}}, \boldsymbol{A_q}, \tan\beta, \mathrm{sgn}\mu$

Nested sampling (several chains) with both log and flat priors on the free parameters

	Observable	Value/Constraint	
Measurements	m_h	$125.85 \pm 0.4 \text{ GeV} (\text{exp}) \pm 4 \text{ GeV} (\text{theo})$	
(Gaussian likelihood	${ m BR}(B o X_s \gamma) imes 10^4$	$3.55 \pm 0.24 \pm 0.09 \;(\mathrm{exp})$	
function)	${ m BR}(B_s o \mu^+ \mu^-) imes 10^9$	$3.2^{+1.4}_{-1.2}~{ m (stat)}~^{+0.5}_{-0.3}~{ m (sys)}$	
Limits	$\Delta\Gamma_Z^{ ext{invisible}}$	< 2 MeV (95% CL)	
	$BR(h \rightarrow invisible)$	< 20% (95% CL)	
(Step likelihood	$m_{ ilde{ au}_1^-}$	$> 85 { m GeV} (95\% { m CL})$	
function) $m_{\widetilde{\chi}_1^+}, m_{\widetilde{e}, \widetilde{\mu}}$		> 101 GeV (95% CL)	
	$m_{ ilde{g}}$	$> 308 { m ~GeV} (95\% { m ~CL})$	

+ DM constraints

C. Arina (IAP & UPMC, Paris) - SUSY 2015, 24th August

C. Arina (IAP & UPMC, Paris) - SUSY 2015, 24th August

C. Arina (IAP & UPMC, Paris) - SUSY 2015, 24th August

MSSM+RN: viable DM parameter space

MSSM+RN: viable DM parameter space

Mixed sneutrino DM is almost sterile

C. Arina (IAP & UPMC, Paris) - SUSY 2015, 24th August

The monochromatic neutrino line

• The LSP and DM is a sneutrino tau • t-channel exchange of neutralino gives rise to neutrino tau sharp line with $E_{nu} = m_{DM}$

C. Arina (IAP & UPMC, Paris) - SUSY 2015, 24th August

Line versus secondary flux

• Neutrino line emission is typical of sneutrino DM (neutralino DM is p-wave)

• Dirac masses have negligible neutrino Yukawa: suppression of the signal

Line versus secondary flux

• Neutrino line emission is typical of sneutrino DM (neutralino DM is p-wave)

• Dirac masses have negligible neutrino Yukawa: suppression of the signal

MSSM+RN

- The largest enhancements are for large neutralino-sneutrino mass splitting
- Sneutrino-neutralino tends to be degenerated because of relic density constraint
- Sigma v today small because relic density fixed by cohannihilation of neutralinochargino and then communicated to sneutrino sector

- The largest enhancements are for large neutralino-sneutrino mass splitting
- Sneutrino-neutralino tends to be degenerated because of relic density constraint
- Sigma v today small because relic density fixed by cohannihilation of neutralinochargino and then communicated to sneutrino sector

Astrophysics: how to boost the signal

- Due to the smallness of sigmav the monochromatic line is not detectable by present astrophysical probes
- When black holes (BHs) form, DM density MIGHT increase to form a DM spike

Expected neutrino flux from Draco dSPh

telescope set up • Point source sensitivity for TeV nus extrapolated down to GeV energies

• Idealistic neutrino

Expected neutrino flux from Draco dSPh

Expected neutrino flux

C. Arina (IAP & UPMC, Paris) - SUSY 2015, 24th August

Complementarity with gamma-ray searches

Conclusions

- Sneutrino as DM is a well motivated scenario: it relates with the generation of neutrino masses
- A large portion of the MSSM+RN parameter space is compatible with the LUX exclusion bound
- Complementary between LHC and direct detection searches
- Indirect searches: monochromatic neutrino linesare a striking signature for sneutrino DM (suppressed for neutralino DM)
- Dwarf spheroidal galaxies are the optimal targets for this signal

Back up slides

Dependence on the A term

Dependence on the A term

MSSM + RN parameter space

C. Arina (IAP & UPMC, Paris) - SUSY 2015, 24th August

DM spike and plateau sensitivity

C. Arina (IAP & UPMC, Paris) - SUSY 2015, 24th August

dSph J factors

	dSph	D [kpc]	$J(1^{\circ}) \; [{ m GeV^2 \; cm^{-5}}]$	
$\mathrm{d} \varphi_{\nu} = 1 \mathrm{d} v \mathrm{d} N_{\nu} \mathrm{d} N_{\nu}$	Northern sky			
$\frac{dE}{dE} = \frac{2}{8\pi} \xi \frac{dE}{m^2} \frac{dE}{dE} \Psi_{\text{Astro}}$	Draco	80	2.11×10^{19}	
$\mathrm{d}E$ or $m_{\tilde{\nu}_{\tau_1}}$ $\mathrm{d}E$	Ursa Minor	66	1.24×10^{19}	
	Sextans	86	8.09×10^{17}	
	Leo I	250	8.87×10^{17}	
$dN_{\nu} \qquad \left(\mathcal{B}^{\tau} \stackrel{dN_{\nu_{\text{line}}}}{\longrightarrow} \delta(E - m_{\tau}) \right)$	Leo II	205	1.37×10^{18}	
$\frac{\mathrm{d}H}{\mathrm{d}E} = \left\{ \begin{array}{cc} \mathcal{D}_{\nu} & \mathrm{d}E \\ \mathrm{d}E & \mathrm{d}N \end{array} \right\}$	Northern sky (ultra faint)			
$dE = \sum_{k} \mathcal{B}_{k}^{k} \frac{dN_{\nu_{k}}}{dE}$	Segue I	23	2.06×10^{17}	
$(\Delta k - \nu dE)$	Ursa Major II	30	1.87×10^{20}	
	Segue II	35	1.72×10^{19}	
	Willman I	38	4.75×10^{19}	
	Coma	44	8.32×10^{19}	
	Boötes I	66	6.07×10^{18}	
	Ursa major I	97	6.79×10^{18}	
	Hercules	132	1.99×10^{18}	
	Canis Venatici II	160	4.13×10^{17}	
\mathbf{I}	Canis Venatici I	218	4.50×10^{18}	
$\Psi_{\rm Astro} \equiv J(\Delta \Omega) = \int d\Omega' \int \rho_{\rm dwarf}(r(s,\theta)) d\Omega'$	S Leo V	180	1.88×10^{16}	
$J_{\Delta\Omega}$ J_{los}	LeoT	407	4.80×10^{17}	
	Southern sky			
	Carina	101	1.05×10^{18}	
	Fornax	138	7.07×10^{17}	
	Sculptor	79	4.30×10^{18}	
	Southern sky (ultra faint)			
	Leo IV	160	2.14×10^{16}	
	Reticulum II	30	5.88×10^{20}	

DM spike and plateau sensitivity

DM spike parameters

Minispike in dSphs:

	dSph	$r_0 \; [m kpc]$	$ ho_0 ~[{ m GeV}~{ m cm}^{-3}]$	$R_{sp} [m pc]$	$ ho_{ m R}~[{ m GeV~cm^{-3}}]$
$M_{\rm BH} = 10^4 (10^2) M_{\odot}$	Draco	2.09	0.99	1.5(0.15)	$1.3 \times 10^3 (1.3 \times 10^4)$
$R_S = 9.57 imes 10^{-9} (imes 10^{-12}) \; { m pc}$	Reticulum II	4.28	2.81	0.63(0.063)	$1.9 imes 10^4 (1.9 imes 10^5)$

Spike in super massive black holes:

SMBH	$M_{ m BH} \ [M_{\odot}]$	$R_{\rm S}$ [pc]	D [Mpc]	$ ho_0 ~[{ m GeV}~{ m cm}^{-3}]$	$arPhi_{ m Astro} \; [{ m GeV^2 \; cm^{-5}}]$	Declination
M87	6.4×10^{9}	6.1×10^{-4}	16.4	2.3	3.5×10^{11}	$+12^{\circ}$
CenA	5.5×10^{7}	5.3×10^{-6}	3	9×10^{5}	$4.3 imes 10^{20}$	-43°
NGC1277	1.7×10^{10}	1.6×10^{-3}	20	495	$2.5 imes 10^{12}$	$+41^{\circ}$

 $t_{BH} = 10^{10}$ years,

Dark Matter and Neutrino sectors in the MSSM can be related

- Several mechanisms to give mass to neutrinos:
 - Dirac masses (G. Belanger et al 2010, B. Dumont et al 2012, CA and M.E. Cabrera 2014, CA et al 2015, ...)
 - Seesaw type I, II, III (high scale) (H. Haber et al 1997, N. Arkani-Hamed et al 2000, D. Hooper et al 2005, CA and N. Fornengo 2007, ...)
 - Inverse seesaw, linear seesaw (low scale) (CA et al 2008, H. An et al 2012, V. De Romeri and M. Hirsch 2012, S. Banerjee et all 2013, ...)
- Modification of the MSSM scalar sector as well
- Mixed sneutrino is again a viable DM candidate
- Sneutrino as DM addresses two issues at once

Dark Matter and Neutrino sectors in the MSSM can be related

Several mechanisms to give mass to neutrinos:

• Dirac masses G. Belanger et al 2010, B. Dumont et al 2012, CA and M.E. Cabrera 2014, CA et al 2015, ...)

• Seesaw type I, II, III (high scale) (H. Haber et al 1997, N. Arkani-Hamed et al 2000, D. Hooper et al 2005, CA and N. Fornengo 2007, ...)

• Inverse seesaw, linear seesaw (low scale) (CA et al 2008, H. An et al 2012, V. De Romeri and M. Hirsch 2012, S. Banerjee et all 2013, ...)

- Modification of the MSSM scalar sector as well
- Mixed sneutrino is again a viable DM candidate
- Sneutrino as DM addresses two issues at once