Exclusive radiative Higgs decays as probes of light-quark Yukawa couplings

Matthias Neubert Mainz Institute for Theoretical Physics Johannes Gutenberg University mitp.uni-mainz.de

SUSY 2015 Lake Tahoe, CA, 27 August 2015

Precision Physics, Fundamental Interactions and Structure of Matter

ERC Advanced Grant (EFT4LHC) An Effective Field Theory Assault on the Zeptometer Scale: Exploring the Origins of Flavor and Electroweak Symmetry Breaking

Precise measurements of the **couplings of the Higgs boson** to SM particles provide a rich laboratory to search for new physics

$$\mathcal{L}_{\text{eff}}^{\text{Higgs}} = \kappa_W \frac{2m_W^2}{v} h W_{\mu}^+ W^{-\mu} + \kappa_Z \frac{m_Z^2}{v} h Z_{\mu} Z^{\mu} - \sum_f \frac{m_f}{v} h \overline{f} \left(\kappa_f + i \tilde{\kappa}_f \gamma_5\right) f$$
$$+ \frac{\alpha}{4\pi v} \left(\kappa_{\gamma\gamma} h F_{\mu\nu} F^{\mu\nu} - \tilde{\kappa}_{\gamma\gamma} h F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2\kappa_{\gamma Z}}{s_W c_W} h F_{\mu\nu} Z^{\mu\nu} - \frac{2\tilde{\kappa}_{\gamma Z}}{s_W c_W} h F_{\mu\nu} \tilde{Z}^{\mu\nu} \right)$$

Yukawa couplings to light fermions ($f \neq t$) are of particular relevance, since they can be modified significantly in many BSM models

Giudice, Lebedev (2008) Harnik, Kopp, Zupan (2012) Bauer, Carena, Gemmler: 1506.01719

Precise measurements of the **couplings of the Higgs boson** to SM particles provide a rich laboratory to search for new physics

$$\mathcal{L}_{\text{eff}}^{\text{Higgs}} = \kappa_W \frac{2m_W^2}{v} h W_{\mu}^+ W^{-\mu} + \kappa_Z \frac{m_Z^2}{v} h Z_{\mu} Z^{\mu} - \sum_f \frac{m_f}{v} h \bar{f} \left(\kappa_f + i\tilde{\kappa}_f \gamma_5\right) f$$
$$+ \frac{\alpha}{4\pi v} \left(\frac{\kappa_{\gamma\gamma} h F_{\mu\nu} F^{\mu\nu} - \tilde{\kappa}_{\gamma\gamma} h F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2\kappa_{\gamma Z}}{s_W c_W} h F_{\mu\nu} Z^{\mu\nu} - \frac{2\tilde{\kappa}_{\gamma Z}}{s_W c_W} h F_{\mu\nu} \tilde{Z}^{\mu\nu} \right)$$

Yukawa couplings to light fermions ($f \neq t$) are of particular relevance, since they can be modified significantly in many BSM models

 $h \rightarrow q\bar{q}$ rate measurements can determine the combination $(\kappa_q^2 + \tilde{\kappa}_q^2)$ for q=b (and bound it for q=c), but how can we access the couplings of other quarks, and how can we distinguish between κ_q and $\tilde{\kappa}_q$?

EDMs only give weak constraints on $\tilde{\kappa}_{f\neq t}$, namely $|\tilde{\kappa}_b| < 1.9$ and $|\tilde{\kappa}_{\tau}| < 2.4$ at 90% CL and for SM-like *hee* coupling (cf. $|\tilde{\kappa}_t| < 0.01$ and $|\tilde{\kappa}_{\gamma\gamma}| < 0.006$) Brod Haisch Zupan (2013)

How, even if the Higgs boson couples to light quarks is so far largely unexplored !

Our work is motivated by recent investigations of exclusive Higgs decays $h \rightarrow V\gamma$, which were proposed as a way to probe for non-standard Yukawa couplings of the Higgs boson to light quarks Bodwin, Petriello, Stoynev, Velasco (2013) Kagan *et al.* (2014); Bodwin *et al.* (2014)

Such measurements are extremely challenging at LHC and future colliders

How, even if the Higgs boson couples to light quarks is so far largely unexplored !

Our work is motivated by recent investigations of exclusive Higgs decays $h \rightarrow V\gamma$, which were proposed as a way to probe for non-standard Yukawa couplings of the Higgs boson to light quarks Bodwin, Petriello, Stoynev, Velasco (2013) Kagan *et al.* (2014); Bodwin *et al.* (2014)

Such measurements are extremely challenging at LHC and future colliders

Based on:

"Exclusive radiative decays of W and Z bosons in QCD factorization" Yuval Grossman, Matthias König, MN (arXiv:1501.06569, JHEP)

"Exclusive radiative Higgs decays as probes of light-quark Yukawa couplings" Matthias König, MN (arXiv:1505.03870, JHEP)

Theoretical framework: QCD factorization

Physical picture: Exclusive $Z \rightarrow M\gamma$ decays

- intermediate propagator is highly virtual (q²~m_Z²) and can be "integrated out", giving rise to a hard function H(x)
- field operators for the external quark (and gluon) fields can be separated by light-like distances, since k²≈0
- simple application of SCET tools

At leading power in an expansion in $\Lambda_{\rm QCD}/m_Z$, one obtains the **QCD** factorization theorem: Brodsky, Lepage (1979); Efremov, Radyushkin (1980)

Light-cone distribution amplitudes (LCDAs)

Momentum distribution of partons in a given Fock state of a meson (quark-antiquark, quark-antiquark-gluon, ...):

$$\langle M(k) | \bar{q}(t\bar{n}) \frac{\not{\bar{n}}}{2} (\gamma_5) [t\bar{n}, 0] q(0) | 0 \rangle = -i f_M E \int_0^1 dx \, e^{ixt\bar{n}\cdot k} \, \phi_M(x, \mu)$$

Expansion in **Gegenbauer polynomials** (diagonalizes evolution at LO):

$$\phi_M(x,\mu) = 6x(1-x) \left[1 + \sum_{n=1}^{\infty} a_n^M(\mu) C_n^{(3/2)}(2x-1) \right]$$

- Gegenbauer moments fall off faster than 1/n for large n
- for light mesons, the odd moments are SU(3)-violating effects
- all moments $a_n^M(\mu) \to 0$ (except $a_0^M \equiv 1$) in the limit $\mu \to \infty$
- model predictions obtained using lattice QCD, QCD sum rules and effective field theories (NRQCD, HQET)
 Ball, Braun (1996); Ball et al. (20)

Ball, Braun (1996); Ball *et al.* (2006, 2007) Arthur *et al.* (2010) Braguta, Likhoded, Luchinsky (2006) Grozin, MN (1996); ... ⁴

RG evolution effects

RG evolution from μ_0 up to the **electroweak scale** changes the shapes of the LCDAs significantly, as they approach closer to the asymptotic form $\phi_M(x,\mu\to\infty) = 6x(1-x)$, positive and increasing with n

Evolution of moments:

$$a_n^M(\mu) = \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\right)^{\gamma_n/2\beta_0} a_n^M(\mu_0)$$

RG evolution effects

RG evolution from μ_0 up to the **electroweak scale** changes the shapes of the LCDAs significantly, as they approach closer to the asymptotic form $\phi_M(x,\mu\to\infty) = 6x(1-x)$, positive and increasing with n

Evolution of moments:

$$a_n^M(\mu) = \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\right)^{\gamma_n/2\beta_0} a_n^M(\mu_0)$$

Power-suppressed corrections

Power-suppressed contributions to the decay amplitudes with given helicities are organized in an expansion in powers of $(\Lambda_{\rm QCD}/m_Z)^2$ for light mesons and $(m_M/m_Z)^2$ for mesons containing heavy quarks

These corrections are **tiny**, of order 10^{-4} for light mesons and at most 1% for the heaviest meson we will consider — the $\Upsilon(1S)$

The QCD factorization approach thus allows for precise predictions, which are limited only by our incomplete knowledge of the LCDAs

Radiative decays $h \rightarrow V\gamma$ as probes of light-quark Yukawa couplings

Factorization of the decay amplitude

Form-factor decomposition of the decay amplitude:

$$i\mathcal{A}(h \to V\gamma) = -\frac{ef_V}{2} \left[\left(\varepsilon_V^* \cdot \varepsilon_\gamma^* - \frac{q \cdot \varepsilon_V^* k \cdot \varepsilon_\gamma^*}{k \cdot q} \right) F_1^V - i\epsilon_{\mu\nu\alpha\beta} \frac{k^\mu q^\nu \varepsilon_V^{*\alpha} \varepsilon_\gamma^{*\beta}}{k \cdot q} \mathrm{JG} \right] \mathsf{U} \right]$$

Destructive interference of two competing decay topologies:

direct contribution, proportional to κ_q and $\tilde{\kappa}_q$

$$\frac{y_q}{\sqrt{2}} = (\kappa_q + i\tilde{\kappa}_q) \,\frac{m_q}{v}$$

Factorization of the decay amplitude

Form-factor decomposition of the decay amplitude:

$$i\mathcal{A}(h \to V\gamma) = -\frac{ef_V}{2} \left[\left(\varepsilon_V^* \cdot \varepsilon_\gamma^* - \frac{q \cdot \varepsilon_V^* k \cdot \varepsilon_\gamma^*}{k \cdot q} \right) F_1^V - i\epsilon_{\mu\nu\alpha\beta} \frac{k^\mu q^\nu \varepsilon_V^{*\alpha} \varepsilon_\gamma^{*\beta}}{k \cdot q} \operatorname{JG} | \mathbf{U} \right] \right]$$

Destructive interference of two competing decay topologies:

Factorization of the decay amplitude

Previous analyses basically allowed for new physics only in the Higgs couplings to light quarks (in fact only κ_q) and worked at tree level in α_s Bodwin, Petriello, Stoynev, Velasco (2013) Kagan, Perez, Petriello, Soreq, Stoynev, Zupan (2014)

In the present work, we:

- allow for generic new-physics effects in the Higgs sector (incl. CPV)
- include NLO QCD corrections and resummation of large logarithms in the direct contribution
- include QCD and EW corrections in the indirect (pole) contributions and account for the **off-shellness** of the γ^* and Z*
- include the effects of ρ - ω - ϕ mixing
- update extraction of hadronic input parameters

Most importantly, we exploit the dependence on both κ_q and $\tilde{\kappa}_q$ to obtain **independent information** on both parameters

Direct contribution to the form factors

Results obtained at NLO in QCD factorization:

$$F_{1,\text{direct}}^V = \frac{m_q}{m_b} \kappa_q Q_q F_V, \qquad F_{2,\text{direct}}^V = \frac{m_q}{m_b} \tilde{\kappa}_q Q_q F_V$$

Reduced form factors:

$$F_{V} = \frac{m_{b}(\mu)}{v} \frac{f_{V}^{\perp}(\mu)}{f_{V}} \int_{0}^{1} dx \, \frac{\phi_{V}^{\perp}(x,\mu)}{x(1-x)} \left[1 + \frac{C_{F}\alpha_{s}(\mu)}{4\pi} h(x,m_{h},\mu) + \mathcal{O}(\alpha_{s}^{2}) \right]$$
$$h(x,m_{h},\mu) = 2\ln\left[x(1-x)\right] \left(\ln\frac{m_{h}^{2}}{\mu^{2}} - i\pi\right) + \ln^{2}x + \ln^{2}(1-x) - 3$$

Direct contribution to the form factors

Resumming large logarithms using RG evolution up to the electroweak scale $\mu \sim m_h$, and accounting for various sources of theoretical uncertainties, we obtain:

Meson	Form factor with errors [%]	Combined value [%]
$F_{ ho^0}$	$4.30^{+0.04}_{-0.05\mu} \pm 0.03_{m_b} \pm 0.24_f \pm 0.12_{a_2} \pm 0.22_{a_4}$	$(4.30 \pm 0.35) + i(0.67 \pm 0.14)$
	$+i\left(0.67^{+0.14}_{-0.10\ \mu}\pm0.00_{m_b}\pm0.04_f\pm0.03_{a_2}\pm0.06_{a_4}\right)$	
F_{ω}	$4.26^{+0.04}_{-0.05\mu} \pm 0.03_{m_b} \pm 0.30_f \pm 0.14_{a_2} \pm 0.21_{a_4}$	$(4.26 \pm 0.40) + i(0.66 \pm 0.14)$
	$+i\left(0.66^{+0.14}_{-0.10\ \mu}\pm0.00_{m_b}\pm0.05_f\pm0.03_{a_2}\pm0.06_{a_4}\right)$	
F_{ϕ}	$4.53^{+0.04}_{-0.05\mu} \pm 0.03_{m_b} \pm 0.24_f \pm 0.15_{a_2} \pm 0.23_{a_4}$	$(4.53 \pm 0.37) + i(0.70 \pm 0.15)$
	$+i\left(0.70^{+0.14}_{-0.10\ \mu}\pm0.01_{m_b}\pm0.04_f\pm0.04_{a_2}\pm0.06_{a_4}\right)$	
$F_{J/\psi}$	$4.54^{+0.02}_{-0.04\mu} \pm 0.03_{m_b} \pm 0.70_{f-0.17\sigma_V}^{+0.13}$	$(4.54 \pm 0.72) + i(0.63 \pm 0.14)$
	$+i\left(0.63^{+0.11}_{-0.08\mu}\pm0.00_{m_b}\pm0.10_{f-0.04\sigma_V}\right)$	
$F_{\Upsilon(1S)}$	$5.04^{+0.02}_{-0.03 \ \mu} \pm 0.04_{m_b} \pm 0.18_{f \ -0.07 \ \sigma_V}^{+0.09}$	$(5.04 \pm 0.21) + i(0.66 \pm 0.10)$
	$+i\left(0.66^{+0.12}_{-0.08\mu}\pm0.00_{m_b}\pm0.02_{f-0.01\sigma_V}\right)$	
$F_{\Upsilon(2S)}$	$5.09^{+0.02}_{-0.04 \ \mu} \pm 0.04_{m_b} \pm 0.24_{f \ -0.12 \ \sigma_V}$	$(5.09 \pm 0.27) + i(0.68 \pm 0.11)$
	$+i\left(0.68^{+0.12}_{-0.09\mu} \pm 0.00_{m_b} \pm 0.03_{f-0.02\sigma_V}\right)$	
$F_{\Upsilon(3S)}$	$5.11_{-0.04\mu}^{+0.02} \pm 0.04_{m_b} \pm 0.24_{f-0.14\sigma_V}^{+0.15}$	$(5.11 \pm 0.29) + i(0.69 \pm 0.12)$
	$+i\left(0.69^{+0.12}_{-0.09\mu}\pm0.00_{m_b}\pm0.03_{f-0.03\sigma_V}\right)$	

Indirect contribution to the form factors

Result involves loop contributions from all charged SM particles, e.g.:

$$F_{1,\text{indirect}}^{V} = \frac{\alpha(m_{V})}{\pi} \frac{m_{h}^{2} - m_{V}^{2}}{m_{V} v} \left[Q_{V} C_{\gamma\gamma}(x_{V}) - \frac{v_{V}}{\left(s_{W} c_{W}\right)^{2}} \frac{m_{V}^{2}}{m_{Z}^{2} - m_{V}^{2}} C_{\gamma Z}(x_{V}) \right]$$

with:

Indirect contribution to the form factors

Result involves loop contributions from all charged SM particles, e.g.:

$$F_{1,\text{indirect}}^{V} = \frac{\alpha(m_{V})}{\pi} \frac{m_{h}^{2} - m_{V}^{2}}{m_{V} v} \left[Q_{V} C_{\gamma\gamma}(x_{V}) - \frac{v_{V}}{\left(s_{W} c_{W}\right)^{2}} \frac{m_{V}^{2}}{m_{Z}^{2} - m_{V}^{2}} C_{\gamma Z}(x_{V}) \right]$$

with:

$$C_{\gamma\gamma}(x_{V}) = \sum_{q} \kappa_{q} \frac{2N_{c}Q_{q}^{2}}{3} A_{f}(\tau_{q}, x_{V}) + \sum_{l} \kappa_{l} \frac{2Q_{l}^{2}}{3} A_{f}(\tau_{l}, x_{V}) - \frac{\kappa_{W}}{2} A_{W}^{\gamma\gamma}(\tau_{W}, x_{V}) + \kappa_{\gamma\gamma}$$
$$C_{\gamma Z}(x_{V}) = \sum_{q} \kappa_{q} \frac{2N_{c}Q_{q}v_{q}}{3} A_{f}(\tau_{q}, x_{V}) + \sum_{l} \kappa_{l} \frac{2Q_{l}v_{l}}{3} A_{f}(\tau_{l}, x_{V}) - \frac{\kappa_{W}}{2} A_{W}^{\gamma Z}(\tau_{W}, x_{V}) + \kappa_{\gamma Z}$$

Contribution of the **on-shell** $h \rightarrow \gamma \gamma$ **amplitude** (including all its radiative corrections), which is sensitive to many new-physics parameters, can be eliminated by considering a **ratio of decay rates**

Master formula

Ratio of branching fractions:

$$\frac{\mathrm{Br}(h \to V\gamma)}{\mathrm{Br}(h \to \gamma\gamma)} = \frac{\Gamma(h \to V\gamma)}{\Gamma(h \to \gamma\gamma)} = \frac{8\pi\alpha^2(m_V)}{\alpha} \frac{Q_V^2 f_V^2}{m_V^2} \left(1 - \frac{m_V^2}{m_h^2}\right)^2 \frac{\left|1 - \Delta_V\right|^2 + \left|r_{\mathrm{CP}} - \tilde{\Delta}_V\right|^2}{1 + |r_{\mathrm{CP}}|^2}$$

Advantages:

- leading term predicted without theoretical uncertainties
- off-shellness effects and $h \rightarrow \gamma Z^* \rightarrow \gamma V$ contribution (included in Δ_V) are power suppressed $\sim m_V^2/m_{h,Z}^2$ and very small even for $\Upsilon(1S)$
- ratio of branching ratios is insensitive to the unknown total Higgs width
- parameter r_{CP} accounts for CP violation in $h \rightarrow \gamma \gamma$ decay and is bounded to be <1% in magnitude (EDMs), hence it is safe to set $r_{CP}=0$

Master formula

Ratio of branching fractions:

$$\frac{\mathrm{Br}(h \to V\gamma)}{\mathrm{Br}(h \to \gamma\gamma)} = \frac{\Gamma(h \to V\gamma)}{\Gamma(h \to \gamma\gamma)} = \frac{8\pi\alpha^2(m_V)}{\alpha} \frac{Q_V^2 f_V^2}{m_V^2} \left(1 - \frac{m_V^2}{m_h^2}\right)^2 \frac{\left|1 - \Delta_V\right|^2 + \left|r_{\mathrm{CP}} - \tilde{\Delta}_V\right|^2}{1 + |r_{\mathrm{CP}}|^2}$$

Theoretical predictions for the hadronic quantities:

$$\Delta_{\phi} = \left[(0.0021 \pm 0.0002) + i(0.0003 \pm 0.0001) \right] \frac{\kappa_s}{\kappa_{\gamma\gamma}^{\text{eff}}} + 0.00014$$
$$\Delta_{J/\psi} = \left[(0.086 \pm 0.014) + i(0.012 \pm 0.003) \right] \frac{\kappa_c}{\kappa_{\gamma\gamma}^{\text{eff}}} + 0.00005$$
$$\Delta_{\Upsilon(1S)} = \left[(0.948 \pm 0.040) + i(0.130 \pm 0.019) \right] \frac{\kappa_b}{\kappa_{\gamma\gamma}^{\text{eff}}} + 0.0184 - 0.0015i$$

Almost identical expressions (with κ_q replaced by $\tilde{\kappa}_q$) hold for $\tilde{\Delta}_V$

power corrections

Key observations

Theoretical predictions for the hadronic quantities:

$$\Delta_{\phi} = \left[(0.0021 \pm 0.0002) + i(0.0003 \pm 0.0001) \right] \frac{\kappa_s}{\kappa_{\gamma\gamma}^{\text{eff}}} + 0.00014$$
$$\Delta_{J/\psi} = \left[(0.086 \pm 0.014) + i(0.012 \pm 0.003) \right] \frac{\kappa_c}{\kappa_{\gamma\gamma}^{\text{eff}}} + 0.00005$$
$$\Delta_{\Upsilon(1S)} = \left[(0.948 \pm 0.040) + i(0.130 \pm 0.019) \right] \frac{\kappa_b}{\kappa_{\gamma\gamma}^{\text{eff}}} + 0.0184 - 0.0015i$$

- interference with the direct amplitude is a small effect for ϕ , J/ ψ and lighter mesons, which are therefore primarily sensitive to $\kappa_q \propto \text{Re}(y_q)$
- on the other hand, one finds an almost perfect destructive interference for Y(1S), where (apart form tiny imaginary part) the decay amplitude has a **magic zero** at $\kappa_b/\kappa_{\gamma\gamma}^{\rm eff} = 1.055 \pm 0.045$

[also: Bodwin, Chung, Ee, Lee, Petriello (2014)]

Key observations

This fortuitous cancellation is **accidental** in the SM - a gift of Nature, which offers us a wonderful **opportunity** to search for new physics!

Predictions for SM branching ratios:

$$Br(h \to \rho^{0}\gamma) = (1.68 \pm 0.02_{f_{\rho}} \pm 0.08_{h \to \gamma\gamma}) \cdot 10^{-5}$$

$$Br(h \to \omega\gamma) = (1.48 \pm 0.03_{f_{\omega}} \pm 0.07_{h \to \gamma\gamma}) \cdot 10^{-6}$$

$$Br(h \to \phi\gamma) = (2.31 \pm 0.03_{f_{\phi}} \pm 0.11_{h \to \gamma\gamma}) \cdot 10^{-6}$$

$$Br(h \to J/\psi \gamma) = (2.95 \pm 0.07_{f_{J/\psi}} \pm 0.06_{\text{direct}} \pm 0.14_{h \to \gamma\gamma}) \cdot 10^{-6}$$

$$Br(h \to \Upsilon(1S) \gamma) = (4.61 \pm 0.06_{f_{\Upsilon(1S)}} + 1.75_{-1.21} \text{ direct} \pm 0.22_{h \to \gamma\gamma}) \cdot 10^{-9}$$

$$Br(h \to \Upsilon(2S) \gamma) = (2.34 \pm 0.04_{f_{\Upsilon(2S)}} + 0.75_{-0.99} \text{ direct} \pm 0.11_{h \to \gamma\gamma}) \cdot 10^{-9}$$

$$Br(h \to \Upsilon(3S) \gamma) = (2.13 \pm 0.04_{f_{\Upsilon(3S)}} + 0.75_{-1.12} \text{ direct} \pm 0.10_{h \to \gamma\gamma}) \cdot 10^{-9}$$

Branching fractions of 10⁻⁶ may be accessible in the high-luminosity run at the LHC (with 3 ab⁻¹ of integrated luminosity)

Key observations

This fortuitous cancellation is **accidental** in the SM - a gift of Nature, which offers us a wonderful **opportunity** to search for new physics!

Predictions for SM branching ratios:

$$Br(h \to \rho^{0}\gamma) = (1.68 \pm 0.02_{f_{\rho}} \pm 0.08_{h \to \gamma\gamma}) \cdot 10^{-5}$$

$$Br(h \to \omega\gamma) = (1.48 \pm 0.03_{f_{\omega}} \pm 0.07_{h \to \gamma\gamma}) \cdot 10^{-6}$$

$$Br(h \to \phi\gamma) = (2.31 \pm 0.03_{f_{\phi}} \pm 0.11_{h \to \gamma\gamma}) \cdot 10^{-6}$$

$$Br(h \to J/\psi\gamma) = (2.95 \pm 0.07_{f_{J/\psi}} \pm 0.06_{\text{direct}} \pm 0.14_{h \to \gamma\gamma}) \cdot 10^{-6}$$

$$Pr(h \to \Upsilon(1S) \chi) = (4.51 \pm 0.06) + 1.75 + 0.22 + 0.10^{-9}$$
Seeing even a single $h \to \Upsilon(nS) \gamma$ event at the LHC would be a clear sign of new physics !
Br(h \to \Upsilon(3S) \gamma) = (2.13 \pm 0.04_{f_{\Upsilon(3S)}} + 0.12_{\text{direct}} \pm 0.10_{h \to \gamma\gamma}) \cdot 10^{-9}

Branching fractions of 10⁻⁶ may be accessible in the high-luminosity run at the LHC (with 3 ab⁻¹ of integrated luminosity)

Predictions for h \rightarrow **J**/ $\psi \gamma$ (no CP violation)

Features:

- SM branching ratio ~ 3.10⁻⁶ challenging [also: Bodwin, Chung, Ee, Lee, Petriello (2014)]
- with $1.7 \cdot 10^8$ Higgs boson (per exp.) produced in 3 ab⁻¹ in high-luminosity run at LHC, one can hope for ~**100 events** (using leptonic J/ ψ decays)
- a 20% measurement would constrain $-0.50 < \kappa_c / \kappa_{\gamma\gamma}^{\text{eff}} < 3.1$

Predictions for h \rightarrow Y(1S) \gamma (no CP violation)

- SM branching ratio ~ $5 \cdot 10^{-9}$ hopeless [also: Bodwin, Chung, Ee, Lee, Petriello (2014)]
- may be possible to probe the interesting region where $\kappa_b \approx -1$
- hypothetical measurement $Br(h \to \Upsilon(1S)\gamma)/Br(h \to \gamma\gamma) = (0.4 \pm 0.1) \cdot 10^{-3}$ would imply a clear hint of new physics, with $-1.21 < \kappa_b/\kappa_{\gamma\gamma}^{eff} < -0.64$

Predictions including CP-odd couplings

• $h \to \Upsilon(1S) \gamma$ mode constrains $(1 - \kappa_b)^2 + \tilde{\kappa}_b^2$, while $h \to b\bar{b}$ rate measurements constrain $\kappa_b^2 + \tilde{\kappa}_b^2$

highly complementary information

Predictions including CP-odd couplings

This is the only method which we are aware of that can provide a path to constrain κ_b and $\tilde{\kappa}_b$ independently !

Implications for BSM models

There exist well-motivated models in which κ_b can differ significantly from its SM value, e.g. type-II 2-Higgs doublet models:

Conclusions

Summary

- ★ Future Higgs factories with highest luminosities (LHC, 100 TeV collider) open up the possibility to measure very rare, exclusive radiative decays of Higgs bosons with decent precision
- ★ Exclusive radiative decays of Higgs bosons can be used to probe in a direct way the Yukawa couplings of the Higgs to light quarks, giving access to κ_b , $\tilde{\kappa}_b$, κ_c (and perhaps even κ_s) in a way that is unrivaled by any other method known to us

The physics case for studying these very rare decays is compelling! The challenge is to make it possible to observe them!

BACKUP SLIDES

Hadronic input parameters for $h \rightarrow V\gamma$

Light mesons:

Meson V	$f_V [{ m MeV}]$	$f_V^{\perp}(2{ m GeV})/f_V$	$a_2^{V_\perp}(\mu_0)$	Q_V	v_V
$ ho^0$	216.3 ± 1.3	0.72 ± 0.04	0.14 ± 0.06	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}} \left(\frac{1}{2} - s_W^2 \right)$
ω	194.2 ± 2.1	0.71 ± 0.05	0.15 ± 0.07	$\frac{1}{3\sqrt{2}}$	$-rac{s_W^2}{3\sqrt{2}}$
ϕ	223.0 ± 1.4	0.76 ± 0.04	0.14 ± 0.07	$-\frac{1}{3}$	$-\frac{1}{4} + \frac{s_W^2}{3}$

Heavy quarkonia:

Meson V	$f_V \; [{ m MeV}]$	$f_V^{\perp}(2{ m GeV})/f_V$	$\sigma_V(\mu_0)$	Q_V	v_V
J/ψ	403.3 ± 5.1	0.91 ± 0.14	$0.228 \pm 0.005 \pm 0.057$	$\frac{2}{3}$	$\frac{1}{4} - \frac{2s_W^2}{3}$
$\Upsilon(1S)$	684.4 ± 4.6	1.09 ± 0.04	$0.112 \pm 0.004 \pm 0.028$	$-\frac{1}{3}$	$-\frac{1}{4}+\frac{s_{W}^{2}}{3}$
$\Upsilon(2S)$	475.8 ± 4.3	1.08 ± 0.05	$0.144 \pm 0.007 \pm 0.036$	$-\frac{1}{3}$	$-\frac{1}{4} + \frac{s_W^2}{3}$
$\Upsilon(3S)$	411.3 ± 3.7	1.07 ± 0.05	$0.162 \pm 0.010 \pm 0.041$	$-\frac{1}{3}$	$-\frac{1}{4} + \frac{s_W^2}{3}$

• model function:

$$\phi_V^{\perp}(x,\mu_0) = N_\sigma \frac{4x(1-x)}{\sqrt{2\pi}\sigma_V} \exp\left[-\frac{(x-\frac{1}{2})^2}{2\sigma_V^2}\right]$$

Comparison with existing predictions: $h \rightarrow V\gamma$

Predictions for SM branching ratios:

$$\begin{split} & \operatorname{Br}(h \to \rho^{0} \gamma) = (1.68 \pm 0.02_{f_{\rho}} \pm 0.08_{h \to \gamma \gamma}) \cdot 10^{-5} & (1.9 \pm 0.15) \cdot 10^{-5} & (\checkmark) \\ & \operatorname{Br}(h \to \omega \gamma) = (1.48 \pm 0.03_{f_{\omega}} \pm 0.07_{h \to \gamma \gamma}) \cdot 10^{-6} & (1.6 \pm 0.17) \cdot 10^{-6} & (\checkmark) \\ & \operatorname{Br}(h \to \phi \gamma) = (2.31 \pm 0.03_{f_{\phi}} \pm 0.11_{h \to \gamma \gamma}) \cdot 10^{-6} & (3.0 \pm 0.13) \cdot 10^{-6} & (\checkmark) \\ & \operatorname{Br}(h \to J/\psi \gamma) = (2.95 \pm 0.07_{f_{J/\psi}} \pm 0.06_{\text{direct}} \pm 0.14_{h \to \gamma \gamma}) \cdot 10^{-6} & (2.79^{+0.16}_{-0.15}) \cdot 10^{-6} & (\checkmark) \\ & \operatorname{Br}(h \to \Upsilon(1S) \gamma) = (4.61 \pm 0.06_{f_{\Upsilon(1S)}} \stackrel{+1.75}{_{-1.21}}_{\text{direct}} \pm 0.22_{h \to \gamma \gamma}) \cdot 10^{-9} & (0.61 \stackrel{+1.74}{_{-0.61}} \cdot 10^{-9} & (\checkmark) \\ & \operatorname{Br}(h \to \Upsilon(2S) \gamma) = (2.34 \pm 0.04_{f_{\Upsilon(2S)}} \stackrel{+0.75}{_{-0.99}}_{\text{direct}} \pm 0.11_{h \to \gamma \gamma}) \cdot 10^{-9} & (2.02 \stackrel{+1.86}{_{-1.28}} \cdot 10^{-9} & (\checkmark) \\ & \operatorname{Br}(h \to \Upsilon(3S) \gamma) = (2.13 \pm 0.04_{f_{\Upsilon(3S)}} \stackrel{+0.75}{_{-1.12}}_{\text{direct}} \pm 0.10_{h \to \gamma \gamma}) \cdot 10^{-9} & (2.44 \stackrel{+1.75}{_{-1.30}} \cdot 10^{-9} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-9} & (2.44 \stackrel{+1.75}{_{-1.30}} \cdot 10^{-9} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-6} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-6} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-6} & (1.6 \pm 0.17) \cdot 10^{-6} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-6} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-6} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-6} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-6} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-6} & (1.6 \pm 0.13) \cdot 10^{-6} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-6} & (1.6 \pm 0.13) \cdot 10^{-6} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-6} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-6} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-6} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-6} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-6} & (\checkmark) \\ & (1.6 \pm 0.17) \cdot 10^{-6} & (1.6 \pm 0.16) + (1.6 \pm 0.16) +$$

Kagan, Perez. Petriello, Soreq, Stoynev, Zupan (2014)

Bodwin, Chung, Ee, Lee, Petriello (2014)