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Introduction

Precise measurements of the couplings of the Higgs boson to SM 
particles provide a rich laboratory to search for new physics


Yukawa couplings to light fermions (         ) are of particular relevance, 
since they can be modified significantly in many BSM models
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Introduction

Precise measurements of the couplings of the Higgs boson to SM 
particles provide a rich laboratory to search for new physics


Yukawa couplings to light fermions (         ) are of particular relevance, 
since they can be modified significantly in many BSM models


             rate measurements can determine the combination                for 
q=b (and bound it for q=c), but how can we access the couplings of other 
quarks, and how can we distinguish between     and     ?


EDMs only give weak constraints on        , namely                and                  
at 90% CL and for SM-like hee coupling (cf.                  and                     )       

1

The h æ V “ decays

Idea: Use hadronic Higgs decays to probe non-standard Higgs couplings.
Work with the e�ective Lagrangian:

LHiggs
e� = ŸW

2m

2
W

v

hW

+
µ W

≠µ + ŸZ
m

2
Z

v

hZµZ

µ ≠
ÿ

f

mf
v

hf̄ (Ÿf + iŸ̃f “5) f

+ –

4fiv

3
Ÿ““hFµ‹F

µ‹ ≠ Ÿ̃““hFµ‹F̃

µ‹ + 2Ÿ“Z
sW cW

hFµ‹Z

µ‹ ≠ 2Ÿ̃“Z
sW cW

hFµ‹ Z̃

µ‹

4

æ Provides a model independent analysis of NP e�ects in h æ V “
decays!

Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings

h ! qq̄
�
2
q + ̃2

q

�

q ̃q

|̃⌧ | < 2.4|̃b| < 1.9
|̃t| < 0.01 |̃�� | < 0.006

f 6= t

Brod, Haisch, Zupan (2013) 

̃f 6=t



Introduction

How, even if the Higgs boson couples to light quarks is so far largely 
unexplored ! 

Our work is motivated by recent investigations of exclusive Higgs decays 
h→Vγ, which were proposed as a way to probe for non-standard Yukawa 
couplings of the Higgs boson to light quarks


Such measurements are extremely challenging at LHC and future colliders

2
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Introduction

How, even if the Higgs boson couples to light quarks is so far largely 
unexplored ! 

Our work is motivated by recent investigations of exclusive Higgs decays 
h→Vγ, which were proposed as a way to probe for non-standard Yukawa 
couplings of the Higgs boson to light quarks


Such measurements are extremely challenging at LHC and future colliders


Based on: 

“Exclusive radiative decays of W and Z bosons in QCD factorization”

Yuval Grossman, Matthias König, MN (arXiv:1501.06569, JHEP)


“Exclusive radiative Higgs decays as probes of light-quark Yukawa 
couplings”  Matthias König, MN (arXiv:1505.03870, JHEP)
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Theoretical framework: QCD factorization



Physical picture:  Exclusive Z→Mγ decays
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Figure 1: Leading-order Feynman diagrams for the radiative decays Z0 → M0γ. The
meson bound state is represented by the gray blob.

M , and as a result the QCD factorization approach can be tested at energies of order 10GeV,
about a factor 2 higher than those available in exclusive B-meson decays. We round off our
study in Section 5 with some experimental considerations. Our main results are summarized
in Section 6. Technical details of our calculations and the extraction of meson decay constants
are relegated to three appendices.

2 Theoretical framework

Our main focus in this work is on the rare, exclusive radiative decays Z → Mγ and W → Mγ,
where M denotes a pseudoscalar or vector meson. We assign momentum k to the final-state
meson and q to the photon. The leading-order Feynman diagrams for the case of Z → Mγ
are shown in Figure 1. The decay plane is spanned by the vectors k and q. We will refer to
vectors in this plane as being longitudinal, and to vector orthogonal to it as being transverse.
We only consider cases where the mass of the final-state meson satisfies mM ≪ mZ . Up to
corrections suppressed as (mM/mZ)2, this mass can then be set to zero. In this limit, we have
kµ = Enµ and qµ = En̄µ, where E = mZ/2 is the energy of the final-state particles in the
Z-boson rest frame, and n and n̄ are two light-like vectors satisfying n · n̄ = 2.

2.1 Derivation of the factorization formula

For the purposes of this discussion we work in the rest frame of the decaying heavy boson. The
decay amplitudes can be calculated from first principles using the QCD factorization approach
[1–5], because the energy E released to the final-state meson is much larger than the scale
of long-distance hadronic physics. At leading power in an expansion in ΛQCD/mZ , they can
be written as convolutions of calculable hard-scattering coefficients with LCDAs of the meson
M . A simple way to derive the corresponding factorization theorem employs the formalism of
SCET [10–13]. It provides a systematic expansion of decay amplitudes in powers of a small
expansion parameter λ = ΛQCD/E. The light final-state meson moving along the direction nµ

can be described in terms of collinear quark, anti-quark and gluon fields. These particles carry
collinear momenta pc that are approximately aligned with the direction n. Their components
scale like (n · pc, n̄ · pc, p⊥c ) ∼ E(λ2, 1,λ). Note that p2c ∼ Λ2

QCD, as appropriate for an exclusive

4
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hard

• intermediate propagator is 
highly virtual (q2~mZ2) and can 
be “integrated out”, giving rise  
to a hard function H(x)


• field operators for the external 
quark (and gluon) fields can be 
separated by light-like 
distances, since k2≈0


• simple application of SCET tools M

At leading power in an expansion in                  , one obtains the QCD 
factorization theorem:

⇤QCD/mZ

decay constant defined in terms of a matrix element of the QCD tensor current. The leading-
order LCDAs can be interpreted as the amplitudes for finding a quark with longitudinal
momentum fraction x insinde the meson. The factor of γ5 in the first equation is present for a
pseudoscalar meson (M = P ) but absent for a longitudinally polarized vector meson (M = V∥).
The projection onto a transversely polarized vector meson does not arise at leading power in
the radiative decays of W and Z bosons. For a given meson, exactly one of the possible
Dirac structures contributes, and we denote the corresponding Wilson coefficient by CM(t, µ).
Defining the Fourier-transformed Wilson coefficient, called the hard function, via

HM(x, µ) ≡
∫

dtCM(t, µ) eixtn̄·k , (5)

we obtain the factorization formula

A = −ifME

∫ 1

0

dxHM(x, µ)φM(x, µ) + power corrections . (6)

Insertions of additional collinear fields or derivatives yield power-suppressed contributions. In
particular, the insertion of an additional collinear gluon field gives rise to three-particle LCDAs.
In order to fully establish the factorization theorem (6) one must show that the convolution
integral over the momentum fraction x converges at the endpoints. This question has been
addressed in the context of the more complicated processes B → γlν [34] and B → K∗γ
in [35]. The behavior near the endpoints can be described by means of soft-collinear fields
[36, 37] with momenta scaling as (n ·psc, n̄ ·psc, p⊥sc) ∼ E(λ2,λ,λ3/2). The contributions of such
modes are always power suppressed. In the present case, we find that endpoint singularities
are absent at leading and subleading power in the large-energy expansion.

LCDAs play the same role for hard exclusive processes which PDFs play for inclusive
ones. While they encode genuinely non-perturbative hadronic physics, they can be rigorously
defined in terms of non-local operator matrix elements in QCD [1–5]. These matrix elements
can be systematically expanded in terms of structures of different twist. When applied to high-
energetic exclusive processes such as the ones considered here, the twist expansion translates
into an expansion in powers of ΛQCD/E. There is an extensive amount of literature devoted
to the study of distribution amplitudes. For light pseudoscalar mesons, the two- and three-
particle LCDAs up to twist-3 order were studied, e.g., in [38], while the corresponding LCDAs
for vector mesons were analyzed, e.g., in [39–41]. We stress that, at the scale of the large
energies released in decays of W and Z bosons, even charm and bottom quarks can be treated
as light quarks, and hence heavy mesons containing these quarks can be described by LCDAs.
This will be discussed further below.

In order to apply these results in practical calculations, it is convenient to define momentum-
space projection operators, which can be applied directly to the decay amplitudes computed
with on-shell external parton states [8, 42]. For all two-particle projections onto LCDAs of
leading and subleading twist, it is sufficient to assign momenta k1 = xk + k⊥ + . . . and
k2 = (1− x)k− k⊥ + . . . to the quark and the anti-quark in the meson M , where k is treated
as a light-like vector (k2 = 0). Meson mass effects of order m2

M enter only at twist-4 level.
They have a tiny numerical impact for the decays considered here, and we will consistently
set m2

M → 0 unless noted otherwise. The variables x and (1 − x) denote the longitudinal
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calculable in PT LCDA:


non-perturbative hadronic physics
decay constant: 


extractable from data
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Light-cone distribution amplitudes (LCDAs)

Momentum distribution of partons in a given Fock state of a meson 
(quark-antiquark, quark-antiquark-gluon, …):


Expansion in Gegenbauer polynomials (diagonalizes evolution at LO):


• Gegenbauer moments fall off faster than 1/n for large n

• for light mesons, the odd moments are SU(3)-violating effects

• all moments                    (except             ) in the limit

• model predictions obtained using lattice QCD, QCD sum rules and 

effective field theories (NRQCD, HQET)    

4

The function φV (x, µ) is sometimes called φ∥
V (x, µ) in the literature. We have used that the

longitudinal polarization vector is given by ε∥µV = 1
mV

(

kµ −m2
V

n̄µ

k·n̄

)

. The vector-meson decay
constant fV is defined in terms of the local matrix element

⟨V (k, εV )| q̄1γµq2 |0⟩ = −ifV mV ε
∗µ
V . (12)

Before proceeding, let us comment on the structure of power corrections to the factorization
formula (6). Inspecting the explicit form of the projection operator for a pseudoscalar meson
in (8), and the corresponding projectors for vector mesons given in (A.1) and (A.4), we observe
that consecutive terms in the twist expansion contain even and odd numbers of Dirac matrices
in alternating order. Since the gauge interactions in the Standard Model preserve chirality,
it follows that for a given helicity amplitude either all terms with an even number of Dirac
matrices contribute or all terms containing an odd number, but not both. Consequently, the
SCET expansion for the Z → Mγ decay amplitudes with fixed polarizations of all particles is
an expansion in powers of (ΛQCD/mZ)2. The power counting changes when quark-mass effects
are taken into account. They give rise to chirality-changing vertices, which give corrections
suppressed by mQ/mZ to both the amplitudes and the meson projectors. This leads to power
corrections of order mQΛQCD/m2

Z and (mQ/mZ)2. For heavy quarks with mQ ≫ ΛQCD, the
latter corrections are the dominant ones. However, as long as the relevant quark masses mQ

are much smaller than the hard scale mZ of the process, these corrections are still small. The
present case is different from the situation encountered in exclusive B-meson decays [6–9],
where the presence of a heavy quark mass, which is of the same order as the energy released in
the decay, allows for O(1) chirality-changing interactions. In this case the decay amplitudes
receive first-order ΛQCD/mb corrections.

2.2 Systematics of the Gegenbauer expansion

The leading-twist LCDAs obey an expansion in Gegenbauer polynomials of the form [1, 5]

φM(x, µ) = 6x(1− x)

[

1 +
∞
∑

n=1

aMn (µ)C(3/2)
n (2x− 1)

]

, (13)

which can be inverted to give

aMn (µ) =
2(2n+ 3)

3(n+ 1)(n+ 2)

∫ 1

0

dxC(3/2)
n (2x− 1)φM(x, µ) . (14)

The Gegenbauer moments have a diagonal scale evolution at leading order in perturbation
theory. They are non-perturbative hadronic parameters, which can only be accessed using
data or a non-perturbative approach such as light-cone QCD sum rules (see e.g. [39–41]) or
lattice QCD [44]. In Table 1 we collect the values for the decay constants and the first two
Gegenbauer moments aM1,2 for light pseudoscalar and vector mesons. Our notation is such that
K(∗) ∼ (qs̄) with q = u, d, and x is the momentum fraction of the light quark q.

An expansion such as (13) is useful provided we have some reason to believe that the
infinite series is dominated by the first few terms. Higher-order Gegenbauer moments of the
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hadronic state. The collinear quark and gluon fields are introduced as gauge-invariant objects
dressed with Wilson lines. Explicitly, one defines [30, 31]

Xc =
/n/̄n

4
W †

c q , Aµ
c⊥ = W †

c (iD
µ
c⊥Wc) , (1)

where iDµ
c = i∂µ + igAµ

c denotes the covariant collinear derivative, and

Wc(x) = P exp

(

ig

∫ 0

−∞
dt n̄ · Ac(x+ tn̄)

)

(2)

is a collinear Wilson line extending from x to infinity along the direction n̄. Both fields are
of O(λ) in SCET power counting. Adding more component fields to an operator always leads
to further power suppression. At leading order in λ, the operators with a non-zero matrix
element between the vacuum and a single meson state are thus of the form X̄c(tn̄) . . . Xc(0)
and Aµ

c⊥(tn̄) . . . Ac⊥µ(0), where without loss of generality we set x = 0 for one of the fields.
Since the effective collinear fields are gauge invariant by themselves, composite operators built
out of these fields can be non-local along the light-like direction n̄. The two-gluon operator
would only be relevant for decays into mesons containing a flavor-singlet component on their
wave functions, such as the pseudoscalar mesons η and η′ [32]. Such decays will be discussed
in a forthcoming publication [33]. It follows that at leading power in the expansion in λ, the
Z → Mγ and W → Mγ decay amplitudes into non-singlet final states can be written in the
factorized form

A =
∑

i

∫

dtCi(t, µ) ⟨M(k)| X̄c(tn̄)
/̄n

2
Γi Xc(0)|0⟩+ power corrections

=
∑

i

∫

dtCi(t, µ) ⟨M(k)| q̄(tn̄)
/̄n

2
Γi [tn̄, 0] q(0)|0⟩+ power corrections,

(3)

where µ is the factorization scale, and Γi ∈ {1, γ5, γµ⊥}. The four matrices (/̄n/2)Γi provide a
basis of Dirac matrices sandwiched between two collinear quark spinors. The Wilson coeffi-
cients Ci(t) are process dependent and can be calculated perturbatively. In the last step we
have used the definition (1) and combined the two Wilson lines Wc(tn̄)W †

c (0) ≡ [tn̄, 0] into a
straight Wilson line extending from 0 to tn̄. The meson matrix elements of the bi-local oper-
ators in the second line define the leading-order LCDAs of pseudoscalar and vector mesons.
Specifically, one has

⟨M(k)| q̄(tn̄)
/̄n

2
(γ5) [tn̄, 0] q(0)|0⟩ = −ifME

∫ 1

0

dx eixtn̄·k φM(x, µ) ; M = P, V∥ ,

⟨V⊥(k)| q̄(tn̄)
/̄n

2
γµ⊥ [tn̄, 0] q(0)|0⟩ = −if⊥

V (µ)E ε⊥∗µ
V

∫ 1

0

dx eixtn̄·k φ⊥
V (x, µ) ,

(4)

where E = n̄ · k/2 denotes the energy of the meson in the rest frame of the decaying boson,
fP and fV are the decay constants of pseudoscalar and vector mesons defined in terms of their
matrix elements of local (axial-)vector currents, and f⊥

V (µ) is a scale-dependent vector-meson
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RG evolution effects

RG evolution from μ0 up to the electroweak scale changes the shapes 
of the LCDAs significantly, as they approach closer to the asymptotic 
form


Evolution of moments:

5

�M (x, µ ! 1) = 6x(1� x)

Our final expressions for the decay amplitudes will contain the scale-dependent, leading-
twist LCDAs φM(x, µ) with M = P, V∥. These functions satisfy the integro-differential evolu-
tion equation

µ
d

dµ
φM(x, µ) = −

∫ 1

0

dy V (x, y, µ)φM(y, µ) , (28)

where V (x, y, µ) = V0(x, y)
CFαs(µ)

π + O(α2
s). The eigenfunctions of the one-loop Brodsky-

Lepage kernel V0(x, y) in (22) are the Gegenbauer polynomials 6x(1 − x)C(3/2)
n (2x − 1), and

hence the Gegenbauer moments an(µ) defined in (13) are multiplicatively renormalized at this
order. They obey the RG equation [1]

µ
d

dµ
aMn (µ) = −γn

αs(µ)

4π
aMn (µ) , (29)

where

γn = 2CF

(

4Hn+1 −
2

(n + 1)(n+ 2)
− 3

)

, with Hn+1 =
n+1
∑

k=1

1

k
. (30)

The evolution of the leading-twist LCDAs at two-loop order has been studied in [77–80]. The
RG equation for the Gegenbauer moments becomes more complicated at this order, since the
scale dependence of aMn (µ) receives contributions proportional to aMk (µ) with k = 0, . . . , n [79–
81]. The evolution equation can still be solved analytically using an iterative scheme. Explicit
results for the lowest moments can be found, e.g., in [50]. However, given that all present
estimates of the hadronic parameters aMn are afflicted with large theoretical uncertainties, it
is sufficient for all practical purposes to use the leading-order solution (29). It reads

aMn (µ) =

(

αs(µ)

αs(µ0)

)γn/2β0

aMn (µ0) , (31)

where β0 =
11
3 Nc− 2

3nf is the first coefficient of the QCD β function. Here µ0 ∼ 1GeV denotes
a low scale, at which the Gegenbauer moments are derived from a non-perturbative approach,
while µ is a high scale to which the LCDAs are evolved. In our analysis this scale is set by the
mass of the decaying electroweak boson. Note that one must adjust the values of β0 whenever
µ crosses a flavor threshold. All of the anomalous dimensions are strictly positive, which
implies that aMn (µ) → 0 in the formal limit µ → ∞. Indeed, for large n the evolution supplies

an additional suppression factor (1/n)K with K = CFαs

π ln µ2

µ2
0
. In this limit, the leading-twist

LCDAs approach the asymptotic form 6x(1− x).
Figure 3 shows the RG evolution of the LCDAs of the kaon, J/ψ meson and B meson

from a low scale µ0 = 1GeV up to a high scale mZ . We use the Gegenbauer moments and
width parameters collected in Tables 1 and 2. For light mesons we truncate the Gegenbauer
expansion (13) at n = 2. For heavy mesons we use the model LCDAs given in (17) and (19),
compute their first 20 Gegenbauer moments, evolve the corresponding coefficients aMn from
µ0 to mZ , and reconstruct the LCDAs at the high scale from (13). The dotted line in the
plots shows the asymptotic form 6x(1 − x). Evolution effects alter the shapes of the various
distributions in a significant way. At the electroweak scale, the LCDAs are significantly closer
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positive and increasing with n

Figure 3: RG evolution of the LCDAs of the kaon (left), the J/ψ meson (middle) and
the B meson (right) from a low scale µ0 = 1GeV (dashed lines) to a high scale µ = mZ

(solid lines). The dotted grey line shows the asymptotic form 6x(1−x) for comparison.

to the asymptotic form 6x(1−x) than at a low hadronic scale. Consequently, RG effects render
our predictions more insensitive to poorly determined hadronic input parameters. Notice, in
particular, that the LCDA of the J/ψ meson at µ = mZ is as close to the asymptotic form
as the kaon LCDA. In practice, the LCDAs of heavy mesons at a scale much larger than the
heavy-quark mass can be well described in terms of a Gegenbauer expansion truncated after
a few Gegenbauer moments.

2.4 Flavor wave functions of neutral mesons

The couplings of photons and of the electroweak gauge bosons W and Z to fermions are flavor
dependent. While the flavor content of charged mesons is unambiguous, for neutral mesons
complications arise from the fact that a given meson can be a superposition of different flavor
components. We write the flavor wave function of the neutral final-state meson M0 in the
form

|M0⟩ =
∑

q=u,d,s,c,b

cMq |qq̄⟩ ; with
∑

q

|cMq |2 = 1 . (32)

For heavy mesons containing charm or bottom quarks such effects can safely be neglected.
The heavy mesons ηc and J/ψ have cc = 1, while ηb and Υ have cb = 1. Mixing effects can
however be important for light mesons.

Following [32], we assume isospin symmetry of all hadronic matrix elements, but we dif-
ferentiate between the matrix elements of mesons containing up or down quarks and those
containing strange quarks. The π0 and ρ0 mesons are members of an isospin triplet and have
flavor content (|uū⟩− |dd̄⟩)/

√
2. Things get more complicated when we consider the mesons η,

η′ and ω, φ, however. In the SU(3) flavor-symmetry limit, the pseudoscalar meson η is a flavor
octet and η′ a flavor singlet. However, it is known empirically that SU(3)-breaking corrections
to these assignments are large. In the following we shall not rely on SU(3) flavor symmetry,
but instead introduce another assumption, expected to be accurate at the 10% level. In the
absence of the axial anomaly, the flavor states |ηq⟩ = (|uū⟩ + |dd̄⟩)/

√
2 and ηs⟩ = |ss̄⟩ mix

only through OZI-violating effects, which are known phenomenologically to be small. It is
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Figure 3 shows the RG evolution of the LCDAs of the kaon, J/ψ meson and B meson

from a low scale µ0 = 1GeV up to a high scale mZ . We use the Gegenbauer moments and
width parameters collected in Tables 1 and 2. For light mesons we truncate the Gegenbauer
expansion (13) at n = 2. For heavy mesons we use the model LCDAs given in (17) and (19),
compute their first 20 Gegenbauer moments, evolve the corresponding coefficients aMn from
µ0 to mZ , and reconstruct the LCDAs at the high scale from (13). The dotted line in the
plots shows the asymptotic form 6x(1 − x). Evolution effects alter the shapes of the various
distributions in a significant way. At the electroweak scale, the LCDAs are significantly closer
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positive and increasing with n

Figure 3: RG evolution of the LCDAs of the kaon (left), the J/ψ meson (middle) and
the B meson (right) from a low scale µ0 = 1GeV (dashed lines) to a high scale µ = mZ

(solid lines). The dotted grey line shows the asymptotic form 6x(1−x) for comparison.

to the asymptotic form 6x(1−x) than at a low hadronic scale. Consequently, RG effects render
our predictions more insensitive to poorly determined hadronic input parameters. Notice, in
particular, that the LCDA of the J/ψ meson at µ = mZ is as close to the asymptotic form
as the kaon LCDA. In practice, the LCDAs of heavy mesons at a scale much larger than the
heavy-quark mass can be well described in terms of a Gegenbauer expansion truncated after
a few Gegenbauer moments.

2.4 Flavor wave functions of neutral mesons

The couplings of photons and of the electroweak gauge bosons W and Z to fermions are flavor
dependent. While the flavor content of charged mesons is unambiguous, for neutral mesons
complications arise from the fact that a given meson can be a superposition of different flavor
components. We write the flavor wave function of the neutral final-state meson M0 in the
form

|M0⟩ =
∑

q=u,d,s,c,b

cMq |qq̄⟩ ; with
∑

q

|cMq |2 = 1 . (32)

For heavy mesons containing charm or bottom quarks such effects can safely be neglected.
The heavy mesons ηc and J/ψ have cc = 1, while ηb and Υ have cb = 1. Mixing effects can
however be important for light mesons.

Following [32], we assume isospin symmetry of all hadronic matrix elements, but we dif-
ferentiate between the matrix elements of mesons containing up or down quarks and those
containing strange quarks. The π0 and ρ0 mesons are members of an isospin triplet and have
flavor content (|uū⟩− |dd̄⟩)/

√
2. Things get more complicated when we consider the mesons η,

η′ and ω, φ, however. In the SU(3) flavor-symmetry limit, the pseudoscalar meson η is a flavor
octet and η′ a flavor singlet. However, it is known empirically that SU(3)-breaking corrections
to these assignments are large. In the following we shall not rely on SU(3) flavor symmetry,
but instead introduce another assumption, expected to be accurate at the 10% level. In the
absence of the axial anomaly, the flavor states |ηq⟩ = (|uū⟩ + |dd̄⟩)/

√
2 and ηs⟩ = |ss̄⟩ mix

only through OZI-violating effects, which are known phenomenologically to be small. It is
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Power-suppressed corrections

Power-suppressed contributions to the decay amplitudes with given 
helicities are organized in an expansion in powers of                       for 
light mesons and                    for mesons containing heavy quarks


These corrections are tiny, of order 10-4 for light mesons and at most 1% 
for the heaviest meson we will consider — the Υ(1S)


The QCD factorization approach thus allows for precise predictions, 
which are limited only by our incomplete knowledge of the LCDAs
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Radiative decays h→Vγ as probes of 
light-quark Yukawa couplings



Factorization of the decay amplitude

Form-factor decomposition of the decay amplitude:


Destructive interference of two competing decay topologies:

7
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Figure 2: Direct (left and center) and indirect (right) contributions to the h → V γ
decay amplitude. The crossed circle in the third diagram denotes the off-shell h → γγ∗

and h → γZ∗ amplitudes, which in the SM arise first at one-loop order.

an off-shell photon or Z boson produced in a h → γγ∗/γZ∗ transition [9]. We refer to this
as the “indirect” contribution. It involves the hadronic matrix element of a local current and
thus can be expressed in terms of the decay constant fV of the vector meson. The direct
contribution is sensitive to the Yukawa coupling of the Higgs boson to the quarks which make
up the vector meson. We shall find that in the SM the direct and indirect contributions to
the h → V γ decay amplitude interfere destructively. They are of similar size for V = Υ,
while the direct contributions are smaller than the indirect ones by factors of about 0.06 for
V = J/ψ, 0.002 for V = φ, and few times 10−5 for V = ρ0 and ω. The sensitivity to the
Yukawa couplings thus crucially relies on the precision with which the indirect contributions
can be calculated. We will come back to this point below.

The most general parametrization of the h → V γ decay amplitude is

iA(h → V γ) = −
efV
2

[

(

ε∗V · ε∗γ −
q · ε∗V k · ε∗γ

k · q

)

F V
1 − iϵµναβ

kµqνε∗αV ε
∗β
γ

k · q
F V
2

]

, (5)

where both the final-state meson and the photon are transversely polarized. From (5), the
decay rate is obtained as

Γ(h → V γ) =
αf 2

V

8mh

(

∣

∣F V
1

∣

∣

2
+
∣

∣F V
2

∣

∣

2
)

. (6)

Here α = 1/137.036 is the fine-structure constant evaluated at q2 = 0 [21], as appropriate
for a real photon. We choose to normalize the decay amplitude in (5) to the vector-meson
decay constant fV , which is defined in terms of a matrix element of a local vector current.
Since we consider neutral, flavor-diagonal mesons, the definition of the decay constants (and
of other hadronic matrix elements) is complicated by the effects of flavor mixing. In complete
generality, such a neutral meson V can be regarded as a superposition of flavor states |qq̄⟩.
We can thus define flavor-dependent decay constants f q

V via

⟨V (k, ε)| q̄γµq |0⟩ = −if q
VmV ε

∗µ ; q = u, d, s, . . . . (7)

A certain combination of these flavor-specific decay constants can be measured in the leptonic
decay V → e+e−. The corresponding decay amplitude involves the matrix element of the
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an off-shell photon or Z boson produced in a h → γγ∗/γZ∗ transition [9]. We refer to this
as the “indirect” contribution. It involves the hadronic matrix element of a local current and
thus can be expressed in terms of the decay constant fV of the vector meson. The direct
contribution is sensitive to the Yukawa coupling of the Higgs boson to the quarks which make
up the vector meson. We shall find that in the SM the direct and indirect contributions to
the h → V γ decay amplitude interfere destructively. They are of similar size for V = Υ,
while the direct contributions are smaller than the indirect ones by factors of about 0.06 for
V = J/ψ, 0.002 for V = φ, and few times 10−5 for V = ρ0 and ω. The sensitivity to the
Yukawa couplings thus crucially relies on the precision with which the indirect contributions
can be calculated. We will come back to this point below.

The most general parametrization of the h → V γ decay amplitude is

iA(h → V γ) = −
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where both the final-state meson and the photon are transversely polarized. From (5), the
decay rate is obtained as
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Here α = 1/137.036 is the fine-structure constant evaluated at q2 = 0 [21], as appropriate
for a real photon. We choose to normalize the decay amplitude in (5) to the vector-meson
decay constant fV , which is defined in terms of a matrix element of a local vector current.
Since we consider neutral, flavor-diagonal mesons, the definition of the decay constants (and
of other hadronic matrix elements) is complicated by the effects of flavor mixing. In complete
generality, such a neutral meson V can be regarded as a superposition of flavor states |qq̄⟩.
We can thus define flavor-dependent decay constants f q

V via

⟨V (k, ε)| q̄γµq |0⟩ = −if q
VmV ε

∗µ ; q = u, d, s, . . . . (7)

A certain combination of these flavor-specific decay constants can be measured in the leptonic
decay V → e+e−. The corresponding decay amplitude involves the matrix element of the
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Figure 5: One-loop SM contributions to the effective hγγ and hγZ vertices.

and our goal is to compute them with the highest possible accuracy, we include the effect that
the intermediate gauge boson is slightly off shell (k2 = m2

V ), and we keep the full dependence
on the meson mass even though this is a very small effect.

The exact one-loop expressions for the off-shell h → γγ∗ and h → γZ∗ amplitudes have
been derived in [50]. Using these results and extending them to the case of the pseudo-scalar
Higgs couplings in (1), we find

F V
1,indirect =

α(mV )

π

m2
h −m2

V

mV v

[

QV Cγγ(xV )−
vV

(sW cW )2
m2

V

m2
Z −m2

V

CγZ(xV )

]

,

F V
2,indirect = i

α(mV )

π

m2
h −m2

V

mV v

[

QV C̃γγ(xV )−
vV

(sW cW )2
m2

V

m2
Z −m2

V

C̃γZ(xV )

]

,

(32)

where xV = m2
V /m

2
h accounts for the effects of the off-shell boson, and vV ≡

∑

q c
V
q vq is defined

in analogy with QV in (8), where vf = 1
2 T

f
3 − s2WQf are the vector couplings of the Z boson

to fermions. It is a safe approximation to neglect flavor-mixing effects for the subleading
contribution from h → γZ∗ → γV . At one-loop order, the loop functions are given by

Cγγ(xV ) =
∑

q

κq
2NcQ2

q

3
Af (τq, xV ) +

∑

l

κl
2Q2

l

3
Af (τl, xV )−

κW
2

Aγγ
W (τW , xV ) + κγγ ,

CγZ(xV ) =
∑

q

κq
2NcQqvq

3
Af(τq, xV ) +

∑

l

κl
2Qlvl
3

Af(τl, xV )−
κW
2

AγZ
W (τW , xV ) + κγZ ,

(33)
and

C̃γγ(xV ) =
∑

q

κ̃qNcQ
2
q Bf(τq, xV ) +

∑

l

κ̃l Q
2
l Bf (τl, xV ) + κ̃γγ ,

C̃γZ(xV ) =
∑

q

κ̃qNcQqvq Bf(τq, xV ) +
∑

l

κ̃l Qlvl Bf(τl, xV ) + κ̃γZ .
(34)

The first two terms in each coefficient are the contributions from the quarks and leptons,
the third term in Cγγ and CγZ arises from gauge-boson loops, and the last term accounts for
possible new-physics contributions parameterized by the operators shown in the second line
of (1). We have introduced the dimensionless variables τf = 4m2

f/m
2
h (for f = q, l) and τW =

4m2
W/m2

h. We use the running quark masses mq(mh) when evaluating the variables τq, which
is appropriate in view of the large momentum transfer in the loop. Explicit expressions for the
loop functions Af , A

γV
W and Bf are given in Appendix D. In the SM we have κq = κl = κW = 1

and κγγ = κγZ = 0. The effective Higgs couplings κ̃i entering in (34) all vanish in the SM.
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Factorization of the decay amplitude

Previous analyses basically allowed for new physics only in the Higgs 
couplings to light quarks (in fact only     ) and worked at tree level in


In the present work, we:

• allow for generic new-physics effects in the Higgs sector (incl. CPV)

• include NLO QCD corrections and resummation of large logarithms in 

the direct contribution

• include QCD and EW corrections in the indirect (pole) contributions and 

account for the off-shellness of the γ* and Z*

• include the effects of ρ-ω-φ mixing


• update extraction of hadronic input parameters


Most importantly, we exploit the dependence on both     and     to obtain 
independent information on both parameters
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Direct contribution to the form factors

Results obtained at NLO in QCD factorization:


Reduced form factors:


9

By evaluating the relevant Feynman graphs in Figures 2 and 3, we find that the direct
contributions to the form factors in the amplitude decomposition (5) are given by

F V
1,direct = κ̄V QV FV , F V

2,direct = i¯̃κV QV FV , (18)

where we have defined

κ̄V =
1

QV

∑

q

κ̄q Qq
f q⊥
V

f⊥
V

, ¯̃κV =
1

QV

∑

q

¯̃κq Qq
f q⊥
V

f⊥
V

. (19)

The reduced form factors FV are given by

FV =
mb(µ)

v

f⊥
V (µ)

fV

∫ 1

0

dx
φ⊥
V (x, µ)

x(1− x)

[

1 +
CFαs(µ)

4π
h(x,mh, µ) +O(α2

s)

]

, (20)

with

h(x,mh, µ) = 2 ln
[

x(1 − x)
]

(

ln
m2

h

µ2
− iπ

)

+ ln2 x+ ln2(1− x)− 3 . (21)

This result agrees with a previous calculation performed in [31] apart from a typo.2 We
have expressed the Yukawa coupling in terms of the running b-quark mass using the second
relation in (2). We focus primarily on the cases V = J/ψ and Υ(nS), where to an excellent
approximation the vector meson contains a single quark flavor q, and hence κ̄J/ψ ≈ κ̄c and
κ̄Υ(nS) ≈ κb, and similarly for the CP-odd parameters ¯̃κV . For the light mesons V = ρ0, ω and
φ, on the other hand, flavor-mixing effects can be important. This concerns, in particular, the
possibility of a small admixture of an |ss̄⟩ flavor component in the wave functions of ρ0 and
ω, which can be important due to the smallness of the Yukawa couplings to the up and down
quarks in the SM. Since the ρ0 meson is a member of an isospin triplet, its flavor mixing into
|ss̄⟩ can only be caused by electromagnetic interactions or isospin-violating effects in QCD.
Both types of effects are estimated to be very small, and hence we expect that |f s⊥

ρ0 /f
⊥
ρ0 | ≪ 1.

To good approximation we can thus use the naive relation

κ̄ρ0 ≈
2κ̄u + κ̄d

3
SM→ 6.1 · 10−4 . (22)

The situation is different for the case of the ω meson, whose mixing into an |ss̄⟩ flavor state
can be non-negligible. In Appendix A we derive explicit expressions for the parameters κ̄ω
and κ̄φ in a simple flavor-mixing scheme for the ω−φ system. Assuming that |κ̄s| ≫ |κ̄u,d| like
in the SM, and working in the SU(3) limit and to first order in the small mixing angle θωφ,
we obtain

κ̄ω ≈ 2κ̄u − κ̄d +
√
2 κ̄s θωφ(m

2
ω)

SM→
(

− 0.08 + 26.8 θωφ
)

· 10−3 ,

κ̄φ ≈ κ̄s

[

1 +
θωφ(m2

φ)√
2

]

SM→ 0.019 + 0.013 θωφ .
(23)

2These authors use the pole mass instead of the running quark mass in the prefactor, which adds
−3 ln(µ2/m2

b)− 4 to the kernel h(x,mh, µ). In eq. (130) of [31] one finds instead −3 ln[µ2/(−m2
h)]− 4. We are

grateful to the authors for confirming this mistake.
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Figure 3: One-loop QCD corrections to the first diagram in Figure 2. Analogous
corrections exist for the second diagram.

The two leading-order graphs shown in Figure 2 are supplemented by the diagrams in
Figure 3, which arise at O(αs). Including these effects is crucial in order to control the scale
dependence of the transverse decay constant f⊥

V , the Yukawa coupling yq and the LCDA φ⊥
V .

It will also allow us to resum large logarithms of the form
(

αs ln(m2
h/µ

2
0)
)n

to all orders in
perturbation theory. Here µ0 ≈ 1GeV is a typical hadronic scale, at which model predictions
for f⊥

V and φ⊥
V are obtained. We work in dimensional regularization and subtract UV and IR

divergences in the MS scheme. The product of the bare decay constant times the LCDA of a
transversely polarized vector meson is related to the product of the corresponding renormalized
quantities via

f⊥bare
V φ⊥bare

V (x) =

∫ 1

0

dy Z−1
φ (x, y, µ) f⊥

V (µ)φ
⊥
V (y, µ) , (13)

where at one-loop order

Zφ(x, y, µ) = δ(x− y) +
CFαs(µ)

2πϵ
V ⊥
0 (x, y) +O(α2

s) , (14)

with CF = 4/3. The relevant one-loop Brodsky-Lepage kernel reads [12, 16]

V ⊥
0 (x, y) =

1

2
δ(x− y)−

1

y(1− y)

[

x(1− y)
θ(y − x)

y − x
+ y(1− x)

θ(x− y)

x− y

]

+

. (15)

For the decays h → V γ, which are mediated by (pseudo-)scalar currents, an overall UV
divergence remains, which is cancelled by the counterterm for the Yukawa coupling, derived
from yq,bare = µϵZy(µ) yq(µ) with

Zy(µ) = 1−
3CFαs(µ)

4πϵ
+O(α2

s) . (16)

When dealing with pseudo-scalar currents we employ the ’tHooft-Veltman (HV) scheme [38],
in which γ5 = iγ0γ1γ2γ3 anti-commutes with the four matrices γµ with µ ∈ {0, 1, 2, 3}, while it
commutes with the remaining (d−4) Dirac matrices γµ⊥. While this definition is mathematically
consistent, it violates the Ward identities of chiral gauge theories by finite terms, which must
be restored order by order in perturbation theory [39]. This is accomplished by performing
the finite renormalization P = ZP

HVPHV of the pseudo-scalar current P = q̄γ5q, where [40]

ZP
HV(µ) = 1− 2CF

αs(µ)

π
+O(α2

s) . (17)
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κ̄Υ(nS) ≈ κb, and similarly for the CP-odd parameters ¯̃κV . For the light mesons V = ρ0, ω and
φ, on the other hand, flavor-mixing effects can be important. This concerns, in particular, the
possibility of a small admixture of an |ss̄⟩ flavor component in the wave functions of ρ0 and
ω, which can be important due to the smallness of the Yukawa couplings to the up and down
quarks in the SM. Since the ρ0 meson is a member of an isospin triplet, its flavor mixing into
|ss̄⟩ can only be caused by electromagnetic interactions or isospin-violating effects in QCD.
Both types of effects are estimated to be very small, and hence we expect that |f s⊥

ρ0 /f
⊥
ρ0 | ≪ 1.

To good approximation we can thus use the naive relation

κ̄ρ0 ≈
2κ̄u + κ̄d

3
SM→ 6.1 · 10−4 . (22)

The situation is different for the case of the ω meson, whose mixing into an |ss̄⟩ flavor state
can be non-negligible. In Appendix A we derive explicit expressions for the parameters κ̄ω
and κ̄φ in a simple flavor-mixing scheme for the ω−φ system. Assuming that |κ̄s| ≫ |κ̄u,d| like
in the SM, and working in the SU(3) limit and to first order in the small mixing angle θωφ,
we obtain

κ̄ω ≈ 2κ̄u − κ̄d +
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2
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SM→
(
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· 10−3 ,
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2These authors use the pole mass instead of the running quark mass in the prefactor, which adds
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b)− 4 to the kernel h(x,mh, µ). In eq. (130) of [31] one finds instead −3 ln[µ2/(−m2
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Direct contribution to the form factors

Resumming large logarithms using RG evolution up to the electroweak 
scale             , and accounting for various sources of theoretical 
uncertainties, we obtain:

10

µ ⇠ mh

Meson Form factor with errors [%] Combined value [%]

Fρ0 4.30 +0.04
− 0.05 µ ± 0.03mb

± 0.24f ± 0.12a2 ± 0.22a4 (4.30± 0.35) + i(0.67± 0.14)

+i
(

0.67 +0.14
− 0.10 µ ± 0.00mb

± 0.04f ± 0.03a2 ± 0.06a4
)

Fω 4.26 +0.04
− 0.05 µ ± 0.03mb

± 0.30f ± 0.14a2 ± 0.21a4 (4.26± 0.40) + i(0.66± 0.14)

+i
(

0.66 +0.14
− 0.10 µ ± 0.00mb

± 0.05f ± 0.03a2 ± 0.06a4
)

Fφ 4.53 +0.04
− 0.05 µ ± 0.03mb

± 0.24f ± 0.15a2 ± 0.23a4 (4.53± 0.37) + i(0.70± 0.15)

+i
(

0.70 +0.14
− 0.10 µ ± 0.01mb

± 0.04f ± 0.04a2 ± 0.06a4
)

FJ/ψ 4.54 +0.02
− 0.04 µ ± 0.03mb

± 0.70f
+0.13
− 0.17 σV (4.54± 0.72) + i(0.63± 0.14)

+i
(

0.63 +0.11
− 0.08 µ ± 0.00mb

± 0.10f
+0.03
− 0.04 σV

)

FΥ(1S) 5.04 +0.02
− 0.03 µ ± 0.04mb

± 0.18f
+0.09
− 0.07 σV (5.04± 0.21) + i(0.66± 0.10)

+i
(

0.66 +0.12
− 0.08 µ ± 0.00mb

± 0.02f
+0.02
− 0.01 σV

)

FΥ(2S) 5.09 +0.02
− 0.04 µ ± 0.04mb

± 0.24f
+0.13
− 0.12 σV (5.09± 0.27) + i(0.68± 0.11)

+i
(

0.68 +0.12
− 0.09 µ ± 0.00mb

± 0.03f
+0.03
− 0.02 σV

)

FΥ(3S) 5.11 +0.02
− 0.04 µ ± 0.04mb

± 0.24f
+0.15
− 0.14 σV (5.11± 0.29) + i(0.69± 0.12)

+i
(

0.69 +0.12
− 0.09 µ ± 0.00mb

± 0.03f
+0.04
− 0.03 σV

)

Table 3: Theory predictions for the reduced form factors FV including error estimates.

moments at the low scale µ0, evolve them up to the factorization scale µ ≈ mh using (28),
and use these results in evaluating relation (26).

We are now ready to present our numerical results for the direct contributions to the
reduced form factors FV in (25) for various vector mesons, including detailed error estimates.
They are collected in Table 3. The different sources of theoretical errors contain a perturbative
uncertainty (subscript “µ”), which we determine by varying the factorization scale µ between
mh/2 and 2mh. Once the NLO corrections are included our results are very stable under
scale variations. The scale uncertainties are larger for the imaginary parts than for the real
parts of the form factors, since these start at O(αs) and there is thus no compensation of
the scale dependence. We emphasize, however, that the imaginary parts only have a small
impact on our numerical predictions for the decay rates. We also include the uncertainty in
the value of the b-quark mass, which has a very small impact. The uncertainties related to
hadronic parameters include the ratio f⊥

V /fV (subscript “f”) and uncertainties in the shapes
of the LCDAs, as modeled by the values of the Gegenbauer moments aV⊥

2 and aV⊥

4 (light
mesons) and the width parameter σV (heavy mesons). These hadronic uncertainties are the
dominant sources of errors. The last column in the table shows the results obtained when all
errors are added in quadrature. These numbers will be used for our phenomenological analysis
in Section 4. We observe that the spread of the results for the form factors FV for different
vector mesons is rather small. The theoretical uncertainties on the real part of FV are typically
between 4% and 9%. The only exception is FJ/ψ, for which the uncertainty in the ratio of
decay constants is about 16%. It would probably be possible to reduce this uncertainty by
performing a more detailed NRQCD analysis.
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Result involves loop contributions from all charged SM particles, e.g.:
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Figure 5: One-loop SM contributions to the effective hγγ and hγZ vertices.

and our goal is to compute them with the highest possible accuracy, we include the effect that
the intermediate gauge boson is slightly off shell (k2 = m2

V ), and we keep the full dependence
on the meson mass even though this is a very small effect.

The exact one-loop expressions for the off-shell h → γγ∗ and h → γZ∗ amplitudes have
been derived in [50]. Using these results and extending them to the case of the pseudo-scalar
Higgs couplings in (1), we find

F V
1,indirect =

α(mV )

π

m2
h −m2

V

mV v

[

QV Cγγ(xV )−
vV

(sW cW )2
m2

V

m2
Z −m2

V

CγZ(xV )

]

,

F V
2,indirect = i

α(mV )

π

m2
h −m2

V

mV v

[

QV C̃γγ(xV )−
vV

(sW cW )2
m2

V

m2
Z −m2

V

C̃γZ(xV )

]

,

(32)

where xV = m2
V /m

2
h accounts for the effects of the off-shell boson, and vV ≡

∑

q c
V
q vq is defined

in analogy with QV in (8), where vf = 1
2 T

f
3 − s2WQf are the vector couplings of the Z boson

to fermions. It is a safe approximation to neglect flavor-mixing effects for the subleading
contribution from h → γZ∗ → γV . At one-loop order, the loop functions are given by

Cγγ(xV ) =
∑

q

κq
2NcQ2

q

3
Af (τq, xV ) +

∑

l

κl
2Q2

l

3
Af (τl, xV )−

κW
2

Aγγ
W (τW , xV ) + κγγ ,

CγZ(xV ) =
∑

q

κq
2NcQqvq

3
Af(τq, xV ) +

∑

l

κl
2Qlvl
3

Af(τl, xV )−
κW
2

AγZ
W (τW , xV ) + κγZ ,

(33)
and

C̃γγ(xV ) =
∑

q

κ̃qNcQ
2
q Bf(τq, xV ) +

∑

l

κ̃l Q
2
l Bf (τl, xV ) + κ̃γγ ,

C̃γZ(xV ) =
∑

q

κ̃qNcQqvq Bf(τq, xV ) +
∑

l

κ̃l Qlvl Bf(τl, xV ) + κ̃γZ .
(34)

The first two terms in each coefficient are the contributions from the quarks and leptons,
the third term in Cγγ and CγZ arises from gauge-boson loops, and the last term accounts for
possible new-physics contributions parameterized by the operators shown in the second line
of (1). We have introduced the dimensionless variables τf = 4m2

f/m
2
h (for f = q, l) and τW =

4m2
W/m2

h. We use the running quark masses mq(mh) when evaluating the variables τq, which
is appropriate in view of the large momentum transfer in the loop. Explicit expressions for the
loop functions Af , A

γV
W and Bf are given in Appendix D. In the SM we have κq = κl = κW = 1

and κγγ = κγZ = 0. The effective Higgs couplings κ̃i entering in (34) all vanish in the SM.
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and our goal is to compute them with the highest possible accuracy, we include the effect that
the intermediate gauge boson is slightly off shell (k2 = m2

V ), and we keep the full dependence
on the meson mass even though this is a very small effect.

The exact one-loop expressions for the off-shell h → γγ∗ and h → γZ∗ amplitudes have
been derived in [50]. Using these results and extending them to the case of the pseudo-scalar
Higgs couplings in (1), we find

F V
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π
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V

mV v

[
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]

,
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,

(32)

where xV = m2
V /m

2
h accounts for the effects of the off-shell boson, and vV ≡

∑

q c
V
q vq is defined

in analogy with QV in (8), where vf = 1
2 T

f
3 − s2WQf are the vector couplings of the Z boson

to fermions. It is a safe approximation to neglect flavor-mixing effects for the subleading
contribution from h → γZ∗ → γV . At one-loop order, the loop functions are given by

Cγγ(xV ) =
∑

q

κq
2NcQ2

q

3
Af (τq, xV ) +

∑

l

κl
2Q2

l

3
Af (τl, xV )−

κW
2

Aγγ
W (τW , xV ) + κγγ ,

CγZ(xV ) =
∑

q

κq
2NcQqvq

3
Af(τq, xV ) +

∑

l

κl
2Qlvl
3

Af(τl, xV )−
κW
2

AγZ
W (τW , xV ) + κγZ ,

(33)
and

C̃γγ(xV ) =
∑

q

κ̃qNcQ
2
q Bf(τq, xV ) +

∑

l

κ̃l Q
2
l Bf (τl, xV ) + κ̃γγ ,

C̃γZ(xV ) =
∑

q

κ̃qNcQqvq Bf(τq, xV ) +
∑

l

κ̃l Qlvl Bf(τl, xV ) + κ̃γZ .
(34)

The first two terms in each coefficient are the contributions from the quarks and leptons,
the third term in Cγγ and CγZ arises from gauge-boson loops, and the last term accounts for
possible new-physics contributions parameterized by the operators shown in the second line
of (1). We have introduced the dimensionless variables τf = 4m2

f/m
2
h (for f = q, l) and τW =

4m2
W/m2

h. We use the running quark masses mq(mh) when evaluating the variables τq, which
is appropriate in view of the large momentum transfer in the loop. Explicit expressions for the
loop functions Af , A

γV
W and Bf are given in Appendix D. In the SM we have κq = κl = κW = 1

and κγγ = κγZ = 0. The effective Higgs couplings κ̃i entering in (34) all vanish in the SM.

14

C��,�Z(xV ) + new physics

h

γ

h

γ

h

γ

γ/Z

Figure 2: Direct (left and center) and indirect (right) contributions to the h → V γ
decay amplitude. The crossed circle in the third diagram denotes the off-shell h → γγ∗

and h → γZ∗ amplitudes, which in the SM arise first at one-loop order.

an off-shell photon or Z boson produced in a h → γγ∗/γZ∗ transition [9]. We refer to this
as the “indirect” contribution. It involves the hadronic matrix element of a local current and
thus can be expressed in terms of the decay constant fV of the vector meson. The direct
contribution is sensitive to the Yukawa coupling of the Higgs boson to the quarks which make
up the vector meson. We shall find that in the SM the direct and indirect contributions to
the h → V γ decay amplitude interfere destructively. They are of similar size for V = Υ,
while the direct contributions are smaller than the indirect ones by factors of about 0.06 for
V = J/ψ, 0.002 for V = φ, and few times 10−5 for V = ρ0 and ω. The sensitivity to the
Yukawa couplings thus crucially relies on the precision with which the indirect contributions
can be calculated. We will come back to this point below.

The most general parametrization of the h → V γ decay amplitude is

iA(h → V γ) = −
efV
2

[

(

ε∗V · ε∗γ −
q · ε∗V k · ε∗γ

k · q

)

F V
1 − iϵµναβ

kµqνε∗αV ε
∗β
γ

k · q
F V
2

]

, (5)

where both the final-state meson and the photon are transversely polarized. From (5), the
decay rate is obtained as

Γ(h → V γ) =
αf 2

V

8mh

(

∣

∣F V
1

∣

∣

2
+
∣

∣F V
2

∣

∣

2
)

. (6)

Here α = 1/137.036 is the fine-structure constant evaluated at q2 = 0 [21], as appropriate
for a real photon. We choose to normalize the decay amplitude in (5) to the vector-meson
decay constant fV , which is defined in terms of a matrix element of a local vector current.
Since we consider neutral, flavor-diagonal mesons, the definition of the decay constants (and
of other hadronic matrix elements) is complicated by the effects of flavor mixing. In complete
generality, such a neutral meson V can be regarded as a superposition of flavor states |qq̄⟩.
We can thus define flavor-dependent decay constants f q

V via

⟨V (k, ε)| q̄γµq |0⟩ = −if q
VmV ε

∗µ ; q = u, d, s, . . . . (7)

A certain combination of these flavor-specific decay constants can be measured in the leptonic
decay V → e+e−. The corresponding decay amplitude involves the matrix element of the

5
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and our goal is to compute them with the highest possible accuracy, we include the effect that
the intermediate gauge boson is slightly off shell (k2 = m2

V ), and we keep the full dependence
on the meson mass even though this is a very small effect.

The exact one-loop expressions for the off-shell h → γγ∗ and h → γZ∗ amplitudes have
been derived in [50]. Using these results and extending them to the case of the pseudo-scalar
Higgs couplings in (1), we find

F V
1,indirect =

α(mV )

π

m2
h −m2

V

mV v

[

QV Cγγ(xV )−
vV

(sW cW )2
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]

,
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]

,

(32)

where xV = m2
V /m

2
h accounts for the effects of the off-shell boson, and vV ≡

∑

q c
V
q vq is defined

in analogy with QV in (8), where vf = 1
2 T

f
3 − s2WQf are the vector couplings of the Z boson

to fermions. It is a safe approximation to neglect flavor-mixing effects for the subleading
contribution from h → γZ∗ → γV . At one-loop order, the loop functions are given by

Cγγ(xV ) =
∑

q

κq
2NcQ2

q

3
Af (τq, xV ) +

∑

l

κl
2Q2

l

3
Af (τl, xV )−

κW
2

Aγγ
W (τW , xV ) + κγγ ,

CγZ(xV ) =
∑

q

κq
2NcQqvq

3
Af(τq, xV ) +

∑

l

κl
2Qlvl
3

Af(τl, xV )−
κW
2

AγZ
W (τW , xV ) + κγZ ,

(33)
and

C̃γγ(xV ) =
∑

q

κ̃qNcQ
2
q Bf(τq, xV ) +

∑

l

κ̃l Q
2
l Bf (τl, xV ) + κ̃γγ ,

C̃γZ(xV ) =
∑

q

κ̃qNcQqvq Bf(τq, xV ) +
∑

l

κ̃l Qlvl Bf(τl, xV ) + κ̃γZ .
(34)

The first two terms in each coefficient are the contributions from the quarks and leptons,
the third term in Cγγ and CγZ arises from gauge-boson loops, and the last term accounts for
possible new-physics contributions parameterized by the operators shown in the second line
of (1). We have introduced the dimensionless variables τf = 4m2

f/m
2
h (for f = q, l) and τW =

4m2
W/m2

h. We use the running quark masses mq(mh) when evaluating the variables τq, which
is appropriate in view of the large momentum transfer in the loop. Explicit expressions for the
loop functions Af , A

γV
W and Bf are given in Appendix D. In the SM we have κq = κl = κW = 1

and κγγ = κγZ = 0. The effective Higgs couplings κ̃i entering in (34) all vanish in the SM.
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and our goal is to compute them with the highest possible accuracy, we include the effect that
the intermediate gauge boson is slightly off shell (k2 = m2

V ), and we keep the full dependence
on the meson mass even though this is a very small effect.

The exact one-loop expressions for the off-shell h → γγ∗ and h → γZ∗ amplitudes have
been derived in [50]. Using these results and extending them to the case of the pseudo-scalar
Higgs couplings in (1), we find
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(32)

where xV = m2
V /m

2
h accounts for the effects of the off-shell boson, and vV ≡

∑

q c
V
q vq is defined

in analogy with QV in (8), where vf = 1
2 T

f
3 − s2WQf are the vector couplings of the Z boson

to fermions. It is a safe approximation to neglect flavor-mixing effects for the subleading
contribution from h → γZ∗ → γV . At one-loop order, the loop functions are given by

Cγγ(xV ) =
∑
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(34)

The first two terms in each coefficient are the contributions from the quarks and leptons,
the third term in Cγγ and CγZ arises from gauge-boson loops, and the last term accounts for
possible new-physics contributions parameterized by the operators shown in the second line
of (1). We have introduced the dimensionless variables τf = 4m2

f/m
2
h (for f = q, l) and τW =

4m2
W/m2

h. We use the running quark masses mq(mh) when evaluating the variables τq, which
is appropriate in view of the large momentum transfer in the loop. Explicit expressions for the
loop functions Af , A

γV
W and Bf are given in Appendix D. In the SM we have κq = κl = κW = 1

and κγγ = κγZ = 0. The effective Higgs couplings κ̃i entering in (34) all vanish in the SM.
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Ratio of branching fractions:


Advantages:

• leading term predicted without theoretical uncertainties

• off-shellness effects and h→γZ*→γV contribution (included in ΔV) are 

power suppressed                      and very small even for Υ(1S)

• ratio of branching ratios is insensitive to the unknown total Higgs width

• parameter rCP accounts for CP violation in h→γγ decay and is bounded 

to be <1% in magnitude (EDMs), hence it is safe to set rCP=0

Master formula

12

a first discussion we can thus focus on the form factors F V
1 . Keeping only the numerically

significant terms, we find

FΥ(1S)
1 = 0.022κW − 0.005κt − 0.005κγγ − (0.017± 0.001)κb + . . . ,

F J/ψ
1 = −0.137κW + 0.030κt + 0.033κγγ + (0.030± 0.005)κ̄c + . . . ,

F φ
1 = 0.206κW − 0.045κt − 0.049κγγ − (0.015± 0.001)κ̄φ + . . . ,

(36)

where the last term in each line represents the direct contribution. We have dropped the
small imaginary parts of the latter, whose impact is tiny. Replacing κ̄φ ≈ κ̄s ≈ 0.019κs and
κ̄c ≈ 0.223κc one obtains equivalent expressions in which the modified Higgs couplings are
expressed as corrections to the SM Yukawa couplings. The challenge is to detect the small
impact of the direct contributions in the last two cases.

To this end, it is essential to have absolute confidence in the precision with which the indi-
rect contributions can be calculated in the SM, and to be able to subtract these contributions
in a reliable way without assuming that the SM is correct. The latter task can be accomplished
because the off-shellness of the photon in the h → γγ∗ contribution as well as the h → γZ∗

contribution in the third graph in Figure 2 are both very small effects. It is therefore possible
to eliminate the main dependence of the indirect contributions on the new-physics parameters
by considering the following ratio of decay rates:

Br(h → V γ)

Br(h → γγ)
=

Γ(h → V γ)

Γ(h → γγ)
=

8πα2(mV )

α

Q2
V f

2
V

m2
V

(

1−
m2

V

m2
h

)2
∣

∣1−∆V

∣

∣

2
+
∣

∣rCP − ∆̃V

∣

∣

2

1 + |rCP|2
.

(37)
Taking such a ratio has the additional advantage that one becomes insensitive to the unknown
total width of the Higgs boson, and hence one obtains directly the ratio of branching fractions.
One can even go one step further and eliminate the sensitivity to the decay constant fV by
using (10) and considering the ratio

mV

Γ(V → e+e−)

Br(h → V γ)

Br(h → γγ)
=

6

α

(

1−
m2

V

m2
h

)2
∣

∣1−∆V

∣

∣

2
+
∣

∣rCP − ∆̃V

∣

∣

2

1 + |rCP|2
. (38)

The only remaining hadronic uncertainties are now contained in the calculation of the reduced
form factors FV , which we have collected in Table 3.

The explicit expressions for the various quantities entering the right-hand side of (37) are
rCP = C̃γγ(0)/Cγγ(0) and

∆V = −κ̄V
FV

Cγγ(0)

πmV v

α(mV )m2
h

−
Cγγ(xV )− Cγγ(0)

Cγγ(0)
+

m2
V

m2
Z

vV
QV s2W c2W

CγZ(0)

Cγγ(0)
,

∆̃V = −¯̃κV
FV

Cγγ(0)

πmV v

α(mV )m2
h

−
C̃γγ(xV )− C̃γγ(0)

Cγγ(0)
+

m2
V

m2
Z

vV
QV (sW cW )2

C̃γZ(0)

Cγγ(0)
,

(39)

where we work to leading order in the small ratios m2
V /m

2
Z and xV = m2

V /m
2
h. Since the

individual terms in these expressions are all normalized to Cγγ(0), it is convenient to define an
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Ratio of branching fractions:


Theoretical predictions for the hadronic quantities:


Almost identical expressions (with     replaced by     ) hold for 

Master formula

13
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power corrections

a first discussion we can thus focus on the form factors F V
1 . Keeping only the numerically

significant terms, we find

FΥ(1S)
1 = 0.022κW − 0.005κt − 0.005κγγ − (0.017± 0.001)κb + . . . ,

F J/ψ
1 = −0.137κW + 0.030κt + 0.033κγγ + (0.030± 0.005)κ̄c + . . . ,

F φ
1 = 0.206κW − 0.045κt − 0.049κγγ − (0.015± 0.001)κ̄φ + . . . ,

(36)

where the last term in each line represents the direct contribution. We have dropped the
small imaginary parts of the latter, whose impact is tiny. Replacing κ̄φ ≈ κ̄s ≈ 0.019κs and
κ̄c ≈ 0.223κc one obtains equivalent expressions in which the modified Higgs couplings are
expressed as corrections to the SM Yukawa couplings. The challenge is to detect the small
impact of the direct contributions in the last two cases.

To this end, it is essential to have absolute confidence in the precision with which the indi-
rect contributions can be calculated in the SM, and to be able to subtract these contributions
in a reliable way without assuming that the SM is correct. The latter task can be accomplished
because the off-shellness of the photon in the h → γγ∗ contribution as well as the h → γZ∗

contribution in the third graph in Figure 2 are both very small effects. It is therefore possible
to eliminate the main dependence of the indirect contributions on the new-physics parameters
by considering the following ratio of decay rates:
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(37)
Taking such a ratio has the additional advantage that one becomes insensitive to the unknown
total width of the Higgs boson, and hence one obtains directly the ratio of branching fractions.
One can even go one step further and eliminate the sensitivity to the decay constant fV by
using (10) and considering the ratio
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The only remaining hadronic uncertainties are now contained in the calculation of the reduced
form factors FV , which we have collected in Table 3.

The explicit expressions for the various quantities entering the right-hand side of (37) are
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where we work to leading order in the small ratios m2
V /m

2
Z and xV = m2

V /m
2
h. Since the

individual terms in these expressions are all normalized to Cγγ(0), it is convenient to define an
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will keep these small effects but evaluate them in the SM. This gives rise to the expressions

∆ρ0 =
[

(0.068± 0.006) + i(0.011± 0.002)
] κ̄ρ0

κeffγγ
+ 0.00002 ,

∆ω =
[

(0.068± 0.006) + i(0.011± 0.002)
] κ̄ω
κeffγγ

− 0.00011 ,

∆φ =
[

(0.093± 0.008) + i(0.015± 0.003)
] κ̄φ
κeffγγ

+ 0.00014 ,

∆J/ψ =
[

(0.281± 0.045) + i(0.040± 0.009)
] κ̄c
κeffγγ

+ 0.00005 ,

(42)

===

∆φ =
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(0.0021± 0.0002) + i(0.0003± 0.0001)
] κs
κeffγγ

+ 0.00014

∆J/ψ =
[

(0.086± 0.014) + i(0.012± 0.003)
] κc
κeffγγ

+ 0.00005

∆Υ(1S) =
[

(0.948± 0.040) + i(0.130± 0.019)
] κb
κeffγγ

+ 0.0184− 0.0015i

(43)

===
and

∆Υ(1S) =
[

(0.948± 0.040) + i(0.130± 0.019)
] κb
κeffγγ

+ 0.0184− 0.0015i ,

∆Υ(2S) =
[

(1.014± 0.054) + i(0.141± 0.022)
] κb
κeffγγ

+ 0.0207− 0.0015i ,

∆Υ(3S) =
[

(1.052± 0.060) + i(0.148± 0.025)
] κb
κeffγγ

+ 0.0221− 0.0015i .

(44)

Approximate expressions for κ̄ρ0 , κ̄ω and κ̄φ have been given in (??) and (??). The constant
terms in the above results show the tiny power-suppressed corrections. Only for the Υ(nS)
states they reach the level of percent. Our complete expressions for the CP-odd coefficients ∆̃V

are also given in Appendix ??. It is a good approximation to only keep the direct contributions
in these terms, which are likely to give rise to the dominant effects. Their coefficients are the
same as in the expressions above, but with κ̄q replaced by ¯̃κq and κb replaced by κ̃b.

It is interesting to compare our result for the quantities ∆V with corresponding expressions
obtained by other authors. From [? ] one can extract ∆ρ0 = (0.095 ± 0.020) (2κ̄u + κ̄d)/3,
∆ω = (0.092 ± 0.021) (2κ̄u + κ̄d) and ∆φ = (0.130 ± 0.027)κ̄s, while from [? ] one can
obtain ∆J/ψ = (0.392 ± 0.053)κ̄c, ∆Υ(1S) = (1.048 ± 0.046)κb, ∆Υ(2S) = (1.138 ± 0.053)κb
and ∆Υ(3S) = (1.175± 0.056)κb. These values are systematically higher than ours due to the
fact that these authors have not (or not fully) included QCD radiative corrections and RG
evolution effects in the direct contributions. For the Υ(nS) states it is important to keep
the small imaginary parts of the direct contributions, since in the SM the real parts almost
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are also given in Appendix ??. It is a good approximation to only keep the direct contributions
in these terms, which are likely to give rise to the dominant effects. Their coefficients are the
same as in the expressions above, but with κ̄q replaced by ¯̃κq and κb replaced by κ̃b.

It is interesting to compare our result for the quantities ∆V with corresponding expressions
obtained by other authors. From [? ] one can extract ∆ρ0 = (0.095 ± 0.020) (2κ̄u + κ̄d)/3,
∆ω = (0.092 ± 0.021) (2κ̄u + κ̄d) and ∆φ = (0.130 ± 0.027)κ̄s, while from [? ] one can
obtain ∆J/ψ = (0.392 ± 0.053)κ̄c, ∆Υ(1S) = (1.048 ± 0.046)κb, ∆Υ(2S) = (1.138 ± 0.053)κb
and ∆Υ(3S) = (1.175± 0.056)κb. These values are systematically higher than ours due to the
fact that these authors have not (or not fully) included QCD radiative corrections and RG
evolution effects in the direct contributions. For the Υ(nS) states it is important to keep
the small imaginary parts of the direct contributions, since in the SM the real parts almost
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and
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[

(0.948± 0.040) + i(0.130± 0.019)
] κb
κeffγγ

+ 0.0184− 0.0015i ,

∆Υ(2S) =
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(1.014± 0.054) + i(0.141± 0.022)
] κb
κeffγγ

+ 0.0207− 0.0015i ,

∆Υ(3S) =
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(1.052± 0.060) + i(0.148± 0.025)
] κb
κeffγγ

+ 0.0221− 0.0015i .

(43)

Approximate expressions for κ̄ρ0 , κ̄ω and κ̄φ have been given in (22) and (23). The constant
terms in the above results show the tiny power-suppressed corrections. Only for the Υ(nS)
states they reach the level of percent. Our complete expressions for the CP-odd coefficients ∆̃V

are also given in Appendix E. It is a good approximation to only keep the direct contributions
in these terms, which are likely to give rise to the dominant effects. Their coefficients are the
same as in the expressions above, but with κ̄q replaced by ¯̃κq and κb replaced by κ̃b.

It is interesting to compare our result for the quantities ∆V with corresponding expressions
obtained by other authors. From [10] one can extract ∆ρ0 = (0.095 ± 0.020) (2κ̄u + κ̄d)/3,
∆ω = (0.092± 0.021) (2κ̄u + κ̄d) and ∆φ = (0.130± 0.027)κ̄s, while from [32] one can obtain
∆J/ψ = (0.392±0.053)κ̄c, ∆Υ(1S) = (1.048±0.046)κb, ∆Υ(2S) = (1.138±0.053)κb and ∆Υ(3S) =
(1.175± 0.056)κb. These values are systematically higher than ours due to the fact that these
authors have not (or not fully) included QCD radiative corrections and RG evolution effects
in the direct contributions. For the Υ(nS) states it is important to keep the small imaginary
parts of the direct contributions, since in the SM the real parts almost perfectly cancel in the
combinations

∣

∣1−∆V

∣

∣ in (37). The result for ∆ω obtained in [10] misses the contribution from
ω−φ mixing and contains a sign mistake in front of κ̄d. Note also that our predictions for the
∆V parameters of light mesons are significantly more accurate than those obtained in [10].

4 Phenomenological results

We begin by quoting our benchmark results for the h → V γ branching fractions in the SM.
For a Higgs mass of mh = (125.09± 0.024) GeV, the SM value of the h → γγ branching ratio
is (2.28± 0.11) · 10−3 [57]. Using this result, we obtain for the decays into light vector mesons

Br(h → ρ0γ) = (1.68± 0.02fρ ± 0.08h→γγ) · 10−5 ,

Br(h → ωγ) = (1.48± 0.03fω ± 0.07h→γγ) · 10−6 ,

Br(h → φγ) = (2.31± 0.03fφ ± 0.11h→γγ) · 10−6 ,

(44)

where we quote separately the uncertainties due to the vector-meson decay constant fV and the
h → γγ branching ratio, the latter being the dominant source of uncertainty. Our predictions
are systematically lower and more accurate than those obtained in [10], where the values
Br(h → ρ0γ) = (1.9 ± 0.15) · 10−5, Br(h → ωγ) = (1.6 ± 0.17) · 10−6 and Br(h → φγ) =
(3.0 ± 0.13) · 10−6 are quoted. While the first two results are compatible with ours within
errors, there is a significant difference for the important mode h → φγ. For decays into heavy
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vector mesons, we find

Br(h → J/ψ γ) = (2.95± 0.07fJ/ψ ± 0.06direct ± 0.14h→γγ) · 10−6 ,

Br(h → Υ(1S) γ) = (4.61± 0.06fΥ(1S)

+1.75
− 1.21 direct ± 0.22h→γγ) · 10−9 ,

Br(h → Υ(2S) γ) = (2.34± 0.04fΥ(2S)

+0.75
− 0.99 direct ± 0.11h→γγ) · 10−9 ,

Br(h → Υ(3S) γ) = (2.13± 0.04fΥ(3S)

+0.75
− 1.12 direct ± 0.10h→γγ) · 10−9 .

(45)

In these cases there is an extra source of theoretical uncertainty related to the calculation of the
direct contribution to the decay amplitude. Note that there is an almost perfect cancellation
between the direct and indirect contributions to the h → Υ(nS) γ decay amplitudes, and as
a consequence the resulting branching ratios are roughly three orders of magnitude smaller
than the h → J/ψ γ branching fraction. For comparison, we note that the branching ratios
found in [32] read (2.79 +0.16

− 0.15) · 10−6 for J/ψ, (0.61 +1.74
− 0.61) · 10−9 for Υ(1S), (2.02 +1.86

− 1.28) · 10−9 for
Υ(2S) and (2.44 +1.75

− 1.30) · 10−9 for Υ(3S). We find good agreement with the results reported by
these authors except for the decay h → Υ(1S) γ, where their value is about a factor 7 smaller
than ours. The reason is that we do not neglect the imaginary part of the direct contribution
to ∆Υ(1S) in (42), which prevents

∣

∣1−∆Υ(1S)

∣

∣

2
from becoming arbitrarily small.

Our predictions may also be compared with the upper limits obtained from a recent first
analysis of these rare decays reported by the ATLAS collaboration. They are Br(h → J/ψ γ) <
1.5 ·10−3, Br(h → Υ(1S) γ) < 1.3 ·10−3, Br(h → Υ(2S) γ) < 1.9 ·10−3 and Br(h → Υ(3S) γ) <
1.3 · 10−3, all at 95% CL [20]. It will require an improvement by a factor 500 to become
sensitive to the h → J/ψ γ mode in the SM, while the SM branching fractions for the decays
h → Υ(nS) γ are out of reach at the LHC. Nevertheless, as we will discuss below, these decay
modes allow for very interesting new-physics searches. With 3 ab−1 of integrated luminosity,
about 1.7× 108 Higgs bosons per experiment will have been produced by the end of the high-
luminosity LHC run [11]. If the J/ψ is reconstructed via its leptonic decays into muon pairs,
the effective branching ratio in the SM is Br(h → J/ψ γ → µ+µ−γ) = 1.8 ·10−7, meaning that
about 30 events can be expected per experiment. If also the decays into e+e− can be used,
then ATLAS and CMS can hope to collect a combined sample of about 120 events. A detailed
discussion of the experimental prospects for reconstructing these events over the background
can be found in [9]. Concerning the h → φγ decay mode, a reconstruction efficiency ϵφγ = 0.75
was assumed for the φγ final state in [10], which appears to us as an optimistic assumption.
In the SM one expects about 400ϵφγ events per experiment in this mode, meaning that the
two experiments can hope to look at a combined sample of several hundred events. Likewise,
in the SM one expects about 2900ϵρ0γ events per experiment in the decay mode h → ρ0γ.

In Figure 6 we show our predictions for the ratio of branching fractions (times 1000) defined
in (37) in the plane of the parameters κ̄V /κeffγγ and ¯̃κV /κeffγγ . We focus on the most interesting
cases V = φ, J/ψ and Υ(1S). The corresponding plots for V = ρ0, ω would look very similar
to that for V = φ (apart from the overall scale of the branching fractions), while the plots for
higher Υ(nS) resonances would look very similar to that for the Υ(1S) meson. For orientation,
we mention that a value of 0.4 in these plots corresponds to a h → V γ branching fraction of
about 10−6, assuming that the h → γγ branching fraction is SM like. This assumption will be
implicit whenever we quote absolute branching ratios below; otherwise the quoted numbers
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In these cases there is an extra source of theoretical uncertainty related to the calculation of the
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between the direct and indirect contributions to the h → Υ(nS) γ decay amplitudes, and as
a consequence the resulting branching ratios are roughly three orders of magnitude smaller
than the h → J/ψ γ branching fraction. For comparison, we note that the branching ratios
found in [32] read (2.79 +0.16

− 0.15) · 10−6 for J/ψ, (0.61 +1.74
− 0.61) · 10−9 for Υ(1S), (2.02 +1.86

− 1.28) · 10−9 for
Υ(2S) and (2.44 +1.75
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1.3 · 10−3, all at 95% CL [20]. It will require an improvement by a factor 500 to become
sensitive to the h → J/ψ γ mode in the SM, while the SM branching fractions for the decays
h → Υ(nS) γ are out of reach at the LHC. Nevertheless, as we will discuss below, these decay
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about 1.7× 108 Higgs bosons per experiment will have been produced by the end of the high-
luminosity LHC run [11]. If the J/ψ is reconstructed via its leptonic decays into muon pairs,
the effective branching ratio in the SM is Br(h → J/ψ γ → µ+µ−γ) = 1.8 ·10−7, meaning that
about 30 events can be expected per experiment. If also the decays into e+e− can be used,
then ATLAS and CMS can hope to collect a combined sample of about 120 events. A detailed
discussion of the experimental prospects for reconstructing these events over the background
can be found in [9]. Concerning the h → φγ decay mode, a reconstruction efficiency ϵφγ = 0.75
was assumed for the φγ final state in [10], which appears to us as an optimistic assumption.
In the SM one expects about 400ϵφγ events per experiment in this mode, meaning that the
two experiments can hope to look at a combined sample of several hundred events. Likewise,
in the SM one expects about 2900ϵρ0γ events per experiment in the decay mode h → ρ0γ.

In Figure 6 we show our predictions for the ratio of branching fractions (times 1000) defined
in (37) in the plane of the parameters κ̄V /κeffγγ and ¯̃κV /κeffγγ . We focus on the most interesting
cases V = φ, J/ψ and Υ(1S). The corresponding plots for V = ρ0, ω would look very similar
to that for V = φ (apart from the overall scale of the branching fractions), while the plots for
higher Υ(nS) resonances would look very similar to that for the Υ(1S) meson. For orientation,
we mention that a value of 0.4 in these plots corresponds to a h → V γ branching fraction of
about 10−6, assuming that the h → γγ branching fraction is SM like. This assumption will be
implicit whenever we quote absolute branching ratios below; otherwise the quoted numbers
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 Seeing even a single                     event at the LHC 
would be a clear sign of new physics !

h ! ⌥(nS) �



Predictions for h→J/ψ γ (no CP violation) 

Features:

• SM branching ratio ~ 3∙10-6 challenging

• with 1.7∙108 Higgs boson (per exp.) produced in 3 ab-1 in high-luminosity 

run at LHC, one can hope for ~100 events (using leptonic J/ψ decays)

• a 20% measurement would constrain

SM

20% measurement

[also: Bodwin, Chung, Ee, Lee, Petriello (2014)]

theory uncertainty

Figure 8: Theoretical predictions for the h → J/ψ γ and h → Υ(1S) γ branching ratios,
normalized to the h → γγ branching fraction, as functions of κc and κb, respectively,
normalized to κeffγγ . The SM values are indicated by the red arrows.

that the upper values reported in [20] imply approximately

√

∣

∣

∣

∣

κc
κeffγγ

∣

∣

∣

∣

2

+

∣

∣

∣

∣

κ̃c
κeffγγ

∣

∣

∣

∣

2

< 429 ,

√

∣

∣

∣

∣

κb
κeffγγ

∣

∣

∣

∣

2

+

∣

∣

∣

∣

κ̃b
κeffγγ

∣

∣

∣

∣

2

< 78 , (46)

both at 95% CL. For comparison, we note that mt/mc ≈ 268 and mt/mb ≈ 60. In other
words, the current bounds derived from exclusive h → V γ decays indicate that the couplings
of the charm and bottom quarks to the Higgs boson are not much stronger than the top-quark
coupling (see also [74], where the more optimistic value |κc| < 220 was obtained).

We emphasize again that any experimental information on the rare radiative decay h →
Υ(nS) γ should be interpreted in terms on an allowed region in the two-dimensional plane of
the couplings κb/κeffγγ and κ̃b/κeffγγ . The one-dimensional projection shown in Figure 8 is meant
for illustrative purposes only. It is interesting to speculate about some possible scenarios that
may arise at the end of the high-luminosity run at the LHC with an integrated luminosity
of 3 ab−1. Existing estimates of the precision achievable on the Yukawa coupling to bottom
quarks and the effective Higgs coupling to photons (our parameter |κeffγγ|) suggest that the
quantity λbγ defined in (45) can be measured with a precision at least as good as 10% at 95%
CL [11]. In Figure 9 we then consider two possible future scenarios:

(I) λbγ = 1.0± 0.10 ,
Br(h → Υ(1S) γ)

Br(h → γγ)
< 0.2 · 10−3 ,

(II) λbγ = 0.65± 0.07 ,
Br(h → Υ(1S) γ)

Br(h → γγ)
= (0.4± 0.2) · 10−3 .

(47)

In the first scenario the ratio Br(h → bb̄)/Br(h → γγ) rate is measured at its SM value and
an upper limit of 0.5 · 10−6 is set on the h → Υ(1S) γ branching ratio (assuming that the
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mesons (V = ρ0,ω,φ) this has basically no impact on the branching ratios. In Figure 7 we
show the ratio of branching fractions as a function of the CP-even couplings κ̄q for h → ρ0γ
(left) and h → φγ (right). In each plot the width of the band indicates the theoretical un-
certainty. We have not included the small uncertainty in the values of the decay constants
fV , because they can be eliminated using relation (38) and we assume that by the time the
h → V γ modes will be discovered the decay constants will have been measured more precisely
than today. The corresponding plot for h → ωγ would look identical to the left plot, but with
a different vertical scale. While the theoretical uncertainties are small in all cases, we observe
that the sensitivity of the branching ratios to the modified Yukawa couplings is unfortunately
rather week. For example, a hypothetical 10% measurement of the h → ρ0γ branching ratio at
the SM value would imply that |κ̄ρ0/κeffγγ | < 0.8, which is to say that a certain combination of
light-quark Yukawa couplings is bounded not to exceed 80% of the b-quark Yukawa coupling.
A 1% measurement of the ratio of branching fractions would be required to obtain the more in-
teresting bound |κ̄ρ0/κeffγγ| < 0.08, which is still more than 100 times the SM value for κ̄ρ0 given
in (22). The situation is not much better for the case h → φγ. With a 10% measurement of the
branching fraction at the SM rate, one would be able to conclude that −0.55 < κ̄s/κeffγγ < 0.62.
With a 1% measurement one would obtain the bounds −0.04 < κ̄s/κeffγγ < 0.08, which would
come close to the SM value κ̄s ≈ 0.02. Such a measurement is however far out of the reach of
the LHC.

Let us now turn to the more interesting cases of radiative Higgs decays into heavy quarko-
nium states. In Figure 8 we show our predictions as a function of the physical parameters κc
(not κ̄c) and κb, again assuming that the CP-odd couplings κ̃c and κ̃b vanish. In the latter case
the impact of a possible CP-odd coupling on the branching fraction can be significant, and in
the case of a measurement of the branching fraction at a non-standard rate one should keep this
possibility in mind. For the left plot in the figure we conclude that with a 20% measurement
of the h → J/ψ γ rate at the SM value would allow one to constrain −0.50 < κc/κeffγγ < 3.1,
which would provide quite interesting information on the CP-even charm-quark Yukawa cou-
pling. With a 10% measurement this range could be shrunk to 0.32 < κc/κeffγγ < 1.52, and
with a 5% measurement one could reach 0.75 < κc/κeffγγ < 1.19. Such measurements serve as
an interesting physics target for a future 100TeV proton-proton collider.

The situation with the h → Υ(nS) γ decay modes is different and quite interesting. In the
SM the corresponding branching fractions shown in (44) are so small that these decays would
be unobservable. The strong suppression arises from an almost perfect cancellation between
the direct and indirect contributions to the decay amplitudes. Thanks to this fortuitous fact,
these decays offer an enhanced sensitivity to the effects of new physics. For instance, the SM
value of the h → Υ(1S) γ branching ratio of 4×10−9 can be enhanced by a factor of more tha
200 for κb/κeffγγ ≈ −1 or κb/κeffγγ ≈ 3. The first of these possibilities (but not the second one)
would yield a h → bb̄ rate consistent with current LHC measurements. For example, with a
hypothetical 25% measurement Br(h → Υ(1S) γ)/Br(h → γγ) = (0.4± 0.1) · 10−3, one would
conclude from the figure that −1.21 < κb/κeffγγ < −0.64, which would be a very significant
piece of information and a spectacular sign of new physics.

One may ask whether the current bounds obtained by the ATLAS collaboration already
have a significant impact on the Higgs couplings. Unfortunately this is not the case. We find
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normalized to κeffγγ . The SM values are indicated by the red arrows.
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both at 95% CL. For comparison, we note that mt/mc ≈ 268 and mt/mb ≈ 60. In other
words, the current bounds derived from exclusive h → V γ decays indicate that the couplings
of the charm and bottom quarks to the Higgs boson are not much stronger than the top-quark
coupling (see also [74], where the more optimistic value |κc| < 220 was obtained).

We emphasize again that any experimental information on the rare radiative decay h →
Υ(nS) γ should be interpreted in terms on an allowed region in the two-dimensional plane of
the couplings κb/κeffγγ and κ̃b/κeffγγ . The one-dimensional projection shown in Figure 8 is meant
for illustrative purposes only. It is interesting to speculate about some possible scenarios that
may arise at the end of the high-luminosity run at the LHC with an integrated luminosity
of 3 ab−1. Existing estimates of the precision achievable on the Yukawa coupling to bottom
quarks and the effective Higgs coupling to photons (our parameter |κeffγγ|) suggest that the
quantity λbγ defined in (45) can be measured with a precision at least as good as 10% at 95%
CL [11]. In Figure 9 we then consider two possible future scenarios:

(I) λbγ = 1.0± 0.10 ,
Br(h → Υ(1S) γ)

Br(h → γγ)
< 0.2 · 10−3 ,
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In the first scenario the ratio Br(h → bb̄)/Br(h → γγ) rate is measured at its SM value and
an upper limit of 0.5 · 10−6 is set on the h → Υ(1S) γ branching ratio (assuming that the
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(left) and h → φγ (right). In each plot the width of the band indicates the theoretical un-
certainty. We have not included the small uncertainty in the values of the decay constants
fV , because they can be eliminated using relation (38) and we assume that by the time the
h → V γ modes will be discovered the decay constants will have been measured more precisely
than today. The corresponding plot for h → ωγ would look identical to the left plot, but with
a different vertical scale. While the theoretical uncertainties are small in all cases, we observe
that the sensitivity of the branching ratios to the modified Yukawa couplings is unfortunately
rather week. For example, a hypothetical 10% measurement of the h → ρ0γ branching ratio at
the SM value would imply that |κ̄ρ0/κeffγγ | < 0.8, which is to say that a certain combination of
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(not κ̄c) and κb, again assuming that the CP-odd couplings κ̃c and κ̃b vanish. In the latter case
the impact of a possible CP-odd coupling on the branching fraction can be significant, and in
the case of a measurement of the branching fraction at a non-standard rate one should keep this
possibility in mind. For the left plot in the figure we conclude that with a 20% measurement
of the h → J/ψ γ rate at the SM value would allow one to constrain −0.50 < κc/κeffγγ < 3.1,
which would provide quite interesting information on the CP-even charm-quark Yukawa cou-
pling. With a 10% measurement this range could be shrunk to 0.32 < κc/κeffγγ < 1.52, and
with a 5% measurement one could reach 0.75 < κc/κeffγγ < 1.19. Such measurements serve as
an interesting physics target for a future 100TeV proton-proton collider.

The situation with the h → Υ(nS) γ decay modes is different and quite interesting. In the
SM the corresponding branching fractions shown in (44) are so small that these decays would
be unobservable. The strong suppression arises from an almost perfect cancellation between
the direct and indirect contributions to the decay amplitudes. Thanks to this fortuitous fact,
these decays offer an enhanced sensitivity to the effects of new physics. For instance, the SM
value of the h → Υ(1S) γ branching ratio of 4×10−9 can be enhanced by a factor of more tha
200 for κb/κeffγγ ≈ −1 or κb/κeffγγ ≈ 3. The first of these possibilities (but not the second one)
would yield a h → bb̄ rate consistent with current LHC measurements. For example, with a
hypothetical 25% measurement Br(h → Υ(1S) γ)/Br(h → γγ) = (0.4± 0.1) · 10−3, one would
conclude from the figure that −1.21 < κb/κeffγγ < −0.64, which would be a very significant
piece of information and a spectacular sign of new physics.

One may ask whether the current bounds obtained by the ATLAS collaboration already
have a significant impact on the Higgs couplings. Unfortunately this is not the case. We find
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the LHC.
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nium states. In Figure 8 we show our predictions as a function of the physical parameters κc
(not κ̄c) and κb, again assuming that the CP-odd couplings κ̃c and κ̃b vanish. In the latter case
the impact of a possible CP-odd coupling on the branching fraction can be significant, and in
the case of a measurement of the branching fraction at a non-standard rate one should keep this
possibility in mind. For the left plot in the figure we conclude that with a 20% measurement
of the h → J/ψ γ rate at the SM value would allow one to constrain −0.50 < κc/κeffγγ < 3.1,
which would provide quite interesting information on the CP-even charm-quark Yukawa cou-
pling. With a 10% measurement this range could be shrunk to 0.32 < κc/κeffγγ < 1.52, and
with a 5% measurement one could reach 0.75 < κc/κeffγγ < 1.19. Such measurements serve as
an interesting physics target for a future 100TeV proton-proton collider.

The situation with the h → Υ(nS) γ decay modes is different and quite interesting. In the
SM the corresponding branching fractions shown in (44) are so small that these decays would
be unobservable. The strong suppression arises from an almost perfect cancellation between
the direct and indirect contributions to the decay amplitudes. Thanks to this fortuitous fact,
these decays offer an enhanced sensitivity to the effects of new physics. For instance, the SM
value of the h → Υ(1S) γ branching ratio of 4×10−9 can be enhanced by a factor of more tha
200 for κb/κeffγγ ≈ −1 or κb/κeffγγ ≈ 3. The first of these possibilities (but not the second one)
would yield a h → bb̄ rate consistent with current LHC measurements. For example, with a
hypothetical 25% measurement Br(h → Υ(1S) γ)/Br(h → γγ) = (0.4± 0.1) · 10−3, one would
conclude from the figure that −1.21 < κb/κeffγγ < −0.64, which would be a very significant
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One may ask whether the current bounds obtained by the ATLAS collaboration already
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Figure 6. Predictions (central values) for the ratios of the h → V γ and h → γγ branching
fractions with V = φ, J/ψ and Υ(1S) as functions of the rescaled Yukawa couplings normalized to
the parameter κeffγγ defined in (3.36). The black dots indicate the SM values. Coupling parameters
inside the dashed white circle in the third plot are preferred by the current LHC data. See text for
further details.

Our predictions may also be compared with the upper limits obtained from a recent

first analysis of these rare decays reported by the ATLAS collaboration. They are Br(h →
J/ψ γ) < 1.5 · 10−3, Br(h → Υ(1S) γ) < 1.3 · 10−3, Br(h → Υ(2S) γ) < 1.9 · 10−3 and

Br(h → Υ(3S) γ) < 1.3 · 10−3, all at 95% CL [20]. It will require an improvement by a

factor 500 to become sensitive to the h → J/ψ γ mode in the SM, while the SM branching

fractions for the decays h → Υ(nS) γ are out of reach at the LHC. Nevertheless, as we

will discuss below, these decay modes allow for very interesting new-physics searches. With

3 ab−1 of integrated luminosity, about 1.7×108 Higgs bosons per experiment will have been

produced by the end of the high-luminosity LHC run [11]. If the J/ψ is reconstructed via its

leptonic decays into muon pairs, the effective branching ratio in the SM is Br(h → J/ψ γ →
µ+µ−γ) = 1.8 · 10−7, meaning that about 30 events can be expected per experiment. If

also the decays into e+e− can be used, then ATLAS and CMS can hope to collect a

combined sample of about 120 events. A detailed discussion of the experimental prospects

for reconstructing these events over the background can be found in [9]. Concerning the

h → φγ decay mode, a reconstruction efficiency ϵφγ = 0.75 was assumed for the φγ final

state in [10], which appears to us as an optimistic assumption. In the SM one expects

about 400ϵφγ events per experiment in this mode, meaning that the two experiments can

hope to look at a combined sample of several hundred events. Likewise, in the SM one

expects about 2900ϵρ0γ events per experiment in the decay mode h → ρ0γ.

In figure 6 we show our predictions for the ratio of branching fractions (times 1000)

defined in (3.33) in the plane of the parameters κ̄V /κeffγγ and ¯̃κV /κeffγγ . We focus on the most

interesting cases V = φ, J/ψ and Υ(1S). The corresponding plots for V = ρ0, ω would

look very similar to that for V = φ (apart from the overall scale of the branching fractions),

while the plots for higher Υ(nS) resonances would look very similar to that for the Υ(1S)

meson. For orientation, we mention that a value of 0.4 in these plots corresponds to a
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Predictions including CP-odd couplings 

This is the only method which we are aware of that can provide a path 
to constrain     and     independently !

Figure 9: Constraints on the effective coupling strengths κb/κeffγγ and κ̃b/κeffγγ derived in
two possible scenarios for future measurements of the ratios Br(h → bb̄)/Br(h → γγ)
(light blue) and Br(h → Υ(1S) γ)/Br(h → γγ) (orange). The allowed parameter space
is given by the red-shaded intersection of the two rings. The black dot indicates the
SM value.
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both at 95% CL. For comparison, we note that mt/mc ≈ 268 and mt/mb ≈ 60. In other
words, the current bounds derived from exclusive h → V γ decays imply that the couplings of
the charm and bottom quarks to the Higgs boson are not much stronger than the top-quark
Yukawa coupling (the more optimistic value |κc| < 220 was quoted in [25]).

We emphasize again that any experimental information on the rare radiative decays h →
Υ(nS) γ should be interpreted in terms of an allowed region in the two-dimensional plane of
the couplings κb/κeffγγ and κ̃b/κeffγγ . The one-dimensional projection shown in Figure 8 is meant
for illustrative purposes only. It is interesting to speculate about some possible scenarios that
may arise at the end of the high-luminosity LHC run with an integrated luminosity of 3 ab−1.
Existing estimates of the precision achievable on the Yukawa coupling to bottom quarks and
the effective Higgs coupling to photons (our parameter |κeffγγ |) suggest that, at 95% CL, the
quantity λbγ defined in (46) can be measured with a precision at least as good as 15% [11]. In
Figure 9 we consider two possible future scenarios:

(I) λbγ = 1.0± 0.15 ,
Br(h → Υ(1S) γ)

Br(h → γγ)
< 0.2 · 10−3 ,

(II) λbγ = 0.65± 0.10 ,
Br(h → Υ(1S) γ)

Br(h → γγ)
= (0.4± 0.2) · 10−3 .

(48)
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Figure 8: Theoretical predictions for the h → J/ψ γ and h → Υ(1S) γ branching ratios,
normalized to the h → γγ branching fraction, as functions of κc and κb, respectively,
normalized to κeffγγ . The SM values are indicated by the red arrows.
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both at 95% CL. For comparison, we note that mt/mc ≈ 268 and mt/mb ≈ 60. In other
words, the current bounds derived from exclusive h → V γ decays indicate that the couplings
of the charm and bottom quarks to the Higgs boson are not much stronger than the top-quark
coupling (see also [74], where the more optimistic value |κc| < 220 was obtained).

We emphasize again that any experimental information on the rare radiative decay h →
Υ(nS) γ should be interpreted in terms on an allowed region in the two-dimensional plane of
the couplings κb/κeffγγ and κ̃b/κeffγγ . The one-dimensional projection shown in Figure 8 is meant
for illustrative purposes only. It is interesting to speculate about some possible scenarios that
may arise at the end of the high-luminosity run at the LHC with an integrated luminosity
of 3 ab−1. Existing estimates of the precision achievable on the Yukawa coupling to bottom
quarks and the effective Higgs coupling to photons (our parameter |κeffγγ|) suggest that the
quantity λbγ defined in (45) can be measured with a precision at least as good as 10% at 95%
CL [11]. In Figure 9 we then consider two possible future scenarios:

(I) λbγ = 1.0± 0.10 ,
Br(h → Υ(1S) γ)

Br(h → γγ)
< 0.2 · 10−3 ,

(II) λbγ = 0.65± 0.07 ,
Br(h → Υ(1S) γ)

Br(h → γγ)
= (0.4± 0.2) · 10−3 .

(47)

In the first scenario the ratio Br(h → bb̄)/Br(h → γγ) rate is measured at its SM value and
an upper limit of 0.5 · 10−6 is set on the h → Υ(1S) γ branching ratio (assuming that the
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Figure 8: Theoretical predictions for the h → J/ψ γ and h → Υ(1S) γ branching ratios,
normalized to the h → γγ branching fraction, as functions of κc and κb, respectively,
normalized to κeffγγ . The SM values are indicated by the red arrows.
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both at 95% CL. For comparison, we note that mt/mc ≈ 268 and mt/mb ≈ 60. In other
words, the current bounds derived from exclusive h → V γ decays indicate that the couplings
of the charm and bottom quarks to the Higgs boson are not much stronger than the top-quark
coupling (see also [74], where the more optimistic value |κc| < 220 was obtained).

We emphasize again that any experimental information on the rare radiative decay h →
Υ(nS) γ should be interpreted in terms on an allowed region in the two-dimensional plane of
the couplings κb/κeffγγ and κ̃b/κeffγγ . The one-dimensional projection shown in Figure 8 is meant
for illustrative purposes only. It is interesting to speculate about some possible scenarios that
may arise at the end of the high-luminosity run at the LHC with an integrated luminosity
of 3 ab−1. Existing estimates of the precision achievable on the Yukawa coupling to bottom
quarks and the effective Higgs coupling to photons (our parameter |κeffγγ|) suggest that the
quantity λbγ defined in (45) can be measured with a precision at least as good as 10% at 95%
CL [11]. In Figure 9 we then consider two possible future scenarios:

(I) λbγ = 1.0± 0.10 ,
Br(h → Υ(1S) γ)

Br(h → γγ)
< 0.2 · 10−3 ,

(II) λbγ = 0.65± 0.07 ,
Br(h → Υ(1S) γ)

Br(h → γγ)
= (0.4± 0.2) · 10−3 .

(47)

In the first scenario the ratio Br(h → bb̄)/Br(h → γγ) rate is measured at its SM value and
an upper limit of 0.5 · 10−6 is set on the h → Υ(1S) γ branching ratio (assuming that the
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Figure 9: Constraints on the effective coupling strengths κb/κeffγγ and κ̃b/κeffγγ derived in
two possible scenarios for future measurements of the ratios Br(h → bb̄)/Br(h → γγ)
(light blue) and Br(h → Υ(1S) γ)/Br(h → γγ) (orange). The allowed parameter space
is given by the red-shaded intersection of the two rings. The black dot indicates the
SM value.
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both at 95% CL. For comparison, we note that mt/mc ≈ 268 and mt/mb ≈ 60. In other
words, the current bounds derived from exclusive h → V γ decays imply that the couplings of
the charm and bottom quarks to the Higgs boson are not much stronger than the top-quark
Yukawa coupling (the more optimistic value |κc| < 220 was quoted in [25]).

We emphasize again that any experimental information on the rare radiative decays h →
Υ(nS) γ should be interpreted in terms of an allowed region in the two-dimensional plane of
the couplings κb/κeffγγ and κ̃b/κeffγγ . The one-dimensional projection shown in Figure 8 is meant
for illustrative purposes only. It is interesting to speculate about some possible scenarios that
may arise at the end of the high-luminosity LHC run with an integrated luminosity of 3 ab−1.
Existing estimates of the precision achievable on the Yukawa coupling to bottom quarks and
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Br(h → Υ(1S) γ)

Br(h → γγ)
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Br(h → Υ(1S) γ)

Br(h → γγ)
= (0.4± 0.2) · 10−3 .

(48)
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Figure 9: Constraints on the effective coupling strengths κb/κeffγγ and κ̃b/κeffγγ derived in
two possible scenarios for future measurements of the ratios Br(h → bb̄)/Br(h → γγ)
(light blue) and Br(h → Υ(1S) γ)/Br(h → γγ) (orange). The allowed parameter space
is given by the red-shaded intersection of the two rings. The black dot indicates the
SM value.
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both at 95% CL. For comparison, we note that mt/mc ≈ 268 and mt/mb ≈ 60. In other
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Implications for BSM models
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There exist well-motivated models in which     can differ significantly from 
its SM value, e.g. type-II 2-Higgs doublet models:


b

ATLAS CONF-2014-010

M. Bauer: priv. discussion

branch with b ⇡ +1

b ⇡ �1branch with 



Conclusions



Summary

★ Future Higgs factories with highest luminosities (LHC, 100 TeV collider) 
open up the possibility to measure very rare, exclusive radiative decays 
of Higgs bosons with decent precision


★ Exclusive radiative decays of Higgs bosons can be used to probe in a 
direct way the Yukawa couplings of the Higgs to light quarks, giving 
access to                 (and perhaps even    ) in a way that is unrivaled by 
any other method known to us  


The physics case for studying these very rare decays is compelling! 
The challenge is to make it possible to observe them! 
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Hadronic input parameters for h→Vγ

Meson V fV [MeV] f⊥
V (2GeV)/fV aV⊥

2 (µ0) QV vV

ρ0 216.3± 1.3 0.72± 0.04 0.14± 0.06 1√
2

1√
2

(

1
2 − s2W

)

ω 194.2± 2.1 0.71± 0.05 0.15± 0.07 1
3
√
2

− s2W
3
√
2

φ 223.0± 1.4 0.76± 0.04 0.14± 0.07 −1
3 −1

4 +
s2W
3

Table 1: Hadronic input parameters for light vector mesons. The decay constants fV
are extracted from data on the electromagnetic decay widths V → l+l− [19], while the
ratios f⊥

V /fV are derived from a compilation of theoretical predictions. The values of
the Gegenbauer moments at the scale µ0 = 1GeV are taken from [47, 48]. The last
two columns show the effective charges QV and vV defined in (8) and below (32).

multiplicatively renormalized, such that [12]

aV⊥

n (µ) =

(

αs(µ)

αs(µ0)

)

γ⊥n
2β0

aV⊥

n (µ0) , with γ⊥n = 8CF (Hn+1 − 1) . (28)

Here µ0 denotes a low reference scale, while µ = O(mh) is the hard factorization scale, to which
the LCDAs are evolved. All of the anomalous dimensions are strictly positive (for n ̸= 0),
which implies that aV⊥

n (µ) → 0 in the formal limit µ → ∞. In this limit the leading-twist
LCDAs approach the asymptotic form 6x(1 − x). Similarly, it follows from relation (B.2) in
Appendix B that the transverse decay constants of vector mesons vanish in the asymptotic
limit, i.e. f⊥

V (µ) → 0 for µ → ∞.
It has been emphasized in [19] that RG evolution effects render our predictions rather

insensitive to poorly known hadronic input parameters. From (26), we obtain

Re IV (mh) = 1.01 + 1.13aV⊥

2 (mh) + 1.21aV⊥

4 (mh) + 1.29aV⊥

6 (mh) + 1.35aV⊥

8 (mh) + . . .

≈ 1.01 + 0.51aV⊥

2 (µ0) + 0.36aV⊥

4 (µ0) + 0.29aV⊥

6 (µ0) + 0.24aV⊥

8 (µ0) + . . . .
(29)

While all Gegenbauer moments have O(1) coefficients at the high-energy scale, the coefficients
of the higher moments are strongly reduced when one expresses the answer in terms of moments
normalized at the low scale µ0 = 1GeV.

In order to obtain numerical predictions for the reduced form factors we need as hadronic
input parameters the decay constants fV and f⊥

V and the Gegenbauer moments aV⊥

2n of the
various vector mesons. As mentioned earlier, the decay constants fV can be extracted from
experimental data, and up-to-date values have been derived in [19]. The ratios f⊥

V /fV needed
in (25) must be obtained using some non-perturbative approach, such as lattice QCD, light-
cone QCD sum rules or the non-relativistic effective theory NRQCD for heavy quarkonia
[45, 46], which provides a systematic expansion of hadronic matrix elements in powers of
the small velocity v ∼ αs(mQv) of the heavy quark in the quarkonium rest frame. Details
of such determinations are reviewed in Appendix C. In Table 1 we compile the relevant
input parameters for light vector mesons. Because of the lack of information about higher
Gegenbauer moments we can only keep few terms in the infinite sum (24). The systematics

10

Meson V fV [MeV] f⊥
V (2GeV)/fV σV (µ0) QV vV

J/ψ 403.3± 5.1 0.91± 0.14 0.228± 0.005± 0.057 2
3

1
4 −

2s2W
3

Υ(1S) 684.4± 4.6 1.09± 0.04 0.112± 0.004± 0.028 −1
3 −1

4 +
s2W
3

Υ(2S) 475.8± 4.3 1.08± 0.05 0.144± 0.007± 0.036 −1
3 −1

4 +
s2W
3

Υ(3S) 411.3± 3.7 1.07± 0.05 0.162± 0.010± 0.041 −1
3 −1

4 +
s2W
3

Table 2: Hadronic input parameters for heavy quarkonium states. The decay constants
fV are extracted from data on the electromagnetic decay widths V → l+l− [19], while
the ratios f⊥

V /fV are derived from NRQCD scaling relations. The width parameters
σV are obtained from relation (30), where the first error is of parametric origin and
the second one parameterizes the uncertainty due to higher-order effects. The last two
columns show the effective charges QV and vV .

of the Gegenbauer expansion has been discussed in [19], where it was pointed out that the
higher moments aV⊥

n with n ≫ 1 fall off faster than 1/n. Indeed, high-rank Gegenbauer

polynomials C(3/2)
n (2x − 1) with n ≫ 1 would resolve structures on scales ∆x ∼ 1/n. For

a light vector meson V , it is reasonable to assume that the LCDA φ⊥
V (x) does not exhibit

pronounced structures at scales much smaller than O(1). To estimate the impact of higher
moments we use aV⊥

4 (µ0) = ±0.15 for our error estimates. Relation (29) suggests that the
effect of yet higher-order terms is small.

The LCDAs of heavy mesons exhibit a different behavior, since the presence of the heavy-
quark mass introduces a new scale. For a quarkonium state V ∼ (QQ̄) composed of two
identical heavy quarks, the LCDA peaks at x = 1/2 and has a width that tends to zero in
the limit of infinite heavy-quark mass. The second moment of the LCDA around x = 1/2 can
be related to a local NRQCD matrix element called ⟨v2⟩V [49]. Including the one-loop QCD
corrections calculated in [31], we obtain

4σ2
V (µ) ≡

∫ 1

0

dx (2x− 1)2 φ⊥
V (x, µ) =

⟨v2⟩V
3

+
CFαs(µ)

4π

(

28

9
−

2

3
ln

m2
Q

µ2

)

+ . . . . (30)

A critical discussion of the extraction of the parameters ⟨v2⟩V for different quarkonium states is
presented in Appendix C. Using the values compiled there, but with increased error estimates,
we obtain the ratios of decay constants and the width parameters σV (µ0) at the low scale
µ0 = 1GeV shown in Table 2. As a reasonable model at the scale µ0 we adopt the form [19]

φ⊥
V (x, µ0) = Nσ

4x(1− x)√
2πσV

exp

[

−
(x− 1

2)
2

2σ2
V

]

, (31)

where the polynomial in front of the Gaussian factor ensures that the LCDA vanishes at the
endpoints x = 0, 1. In order to estimate the uncertainties related to the functional form and to
capture the effects of unknown higher-order corrections to relation (30), we include a second
error of ±25% on the σV parameters. Given this form, we compute the first 20 Gegenbauer
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Light mesons:


Heavy quarkonia:


• model function:



Predictions for SM branching ratios:

Comparison with existing predictions: h→Vγ

and
∆Υ(1S) =

[

(0.948± 0.040) + i(0.130± 0.019)
] κb
κeffγγ

+ 0.0184− 0.0015i ,

∆Υ(2S) =
[

(1.014± 0.054) + i(0.141± 0.022)
] κb
κeffγγ

+ 0.0207− 0.0015i ,

∆Υ(3S) =
[

(1.052± 0.060) + i(0.148± 0.025)
] κb
κeffγγ

+ 0.0221− 0.0015i .

(43)

Approximate expressions for κ̄ρ0 , κ̄ω and κ̄φ have been given in (22) and (23). The constant
terms in the above results show the tiny power-suppressed corrections. Only for the Υ(nS)
states they reach the level of percent. Our complete expressions for the CP-odd coefficients ∆̃V

are also given in Appendix E. It is a good approximation to only keep the direct contributions
in these terms, which are likely to give rise to the dominant effects. Their coefficients are the
same as in the expressions above, but with κ̄q replaced by ¯̃κq and κb replaced by κ̃b.

It is interesting to compare our result for the quantities ∆V with corresponding expressions
obtained by other authors. From [10] one can extract ∆ρ0 = (0.095 ± 0.020) (2κ̄u + κ̄d)/3,
∆ω = (0.092± 0.021) (2κ̄u + κ̄d) and ∆φ = (0.130± 0.027)κ̄s, while from [32] one can obtain
∆J/ψ = (0.392±0.053)κ̄c, ∆Υ(1S) = (1.048±0.046)κb, ∆Υ(2S) = (1.138±0.053)κb and ∆Υ(3S) =
(1.175± 0.056)κb. These values are systematically higher than ours due to the fact that these
authors have not (or not fully) included QCD radiative corrections and RG evolution effects
in the direct contributions. For the Υ(nS) states it is important to keep the small imaginary
parts of the direct contributions, since in the SM the real parts almost perfectly cancel in the
combinations

∣

∣1−∆V

∣

∣ in (37). The result for ∆ω obtained in [10] misses the contribution from
ω−φ mixing and contains a sign mistake in front of κ̄d. Note also that our predictions for the
∆V parameters of light mesons are significantly more accurate than those obtained in [10].

4 Phenomenological results

We begin by quoting our benchmark results for the h → V γ branching fractions in the SM.
For a Higgs mass of mh = (125.09± 0.024) GeV, the SM value of the h → γγ branching ratio
is (2.28± 0.11) · 10−3 [57]. Using this result, we obtain for the decays into light vector mesons

Br(h → ρ0γ) = (1.68± 0.02fρ ± 0.08h→γγ) · 10−5 ,

Br(h → ωγ) = (1.48± 0.03fω ± 0.07h→γγ) · 10−6 ,

Br(h → φγ) = (2.31± 0.03fφ ± 0.11h→γγ) · 10−6 ,

(44)

where we quote separately the uncertainties due to the vector-meson decay constant fV and the
h → γγ branching ratio, the latter being the dominant source of uncertainty. Our predictions
are systematically lower and more accurate than those obtained in [10], where the values
Br(h → ρ0γ) = (1.9 ± 0.15) · 10−5, Br(h → ωγ) = (1.6 ± 0.17) · 10−6 and Br(h → φγ) =
(3.0 ± 0.13) · 10−6 are quoted. While the first two results are compatible with ours within
errors, there is a significant difference for the important mode h → φγ. For decays into heavy
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vector mesons, we find

Br(h → J/ψ γ) = (2.95± 0.07fJ/ψ ± 0.06direct ± 0.14h→γγ) · 10−6 ,

Br(h → Υ(1S) γ) = (4.61± 0.06fΥ(1S)

+1.75
− 1.21 direct ± 0.22h→γγ) · 10−9 ,

Br(h → Υ(2S) γ) = (2.34± 0.04fΥ(2S)

+0.75
− 0.99 direct ± 0.11h→γγ) · 10−9 ,

Br(h → Υ(3S) γ) = (2.13± 0.04fΥ(3S)

+0.75
− 1.12 direct ± 0.10h→γγ) · 10−9 .

(45)

In these cases there is an extra source of theoretical uncertainty related to the calculation of the
direct contribution to the decay amplitude. Note that there is an almost perfect cancellation
between the direct and indirect contributions to the h → Υ(nS) γ decay amplitudes, and as
a consequence the resulting branching ratios are roughly three orders of magnitude smaller
than the h → J/ψ γ branching fraction. For comparison, we note that the branching ratios
found in [32] read (2.79 +0.16

− 0.15) · 10−6 for J/ψ, (0.61 +1.74
− 0.61) · 10−9 for Υ(1S), (2.02 +1.86

− 1.28) · 10−9 for
Υ(2S) and (2.44 +1.75

− 1.30) · 10−9 for Υ(3S). We find good agreement with the results reported by
these authors except for the decay h → Υ(1S) γ, where their value is about a factor 7 smaller
than ours. The reason is that we do not neglect the imaginary part of the direct contribution
to ∆Υ(1S) in (42), which prevents

∣

∣1−∆Υ(1S)

∣

∣

2
from becoming arbitrarily small.

Our predictions may also be compared with the upper limits obtained from a recent first
analysis of these rare decays reported by the ATLAS collaboration. They are Br(h → J/ψ γ) <
1.5 ·10−3, Br(h → Υ(1S) γ) < 1.3 ·10−3, Br(h → Υ(2S) γ) < 1.9 ·10−3 and Br(h → Υ(3S) γ) <
1.3 · 10−3, all at 95% CL [20]. It will require an improvement by a factor 500 to become
sensitive to the h → J/ψ γ mode in the SM, while the SM branching fractions for the decays
h → Υ(nS) γ are out of reach at the LHC. Nevertheless, as we will discuss below, these decay
modes allow for very interesting new-physics searches. With 3 ab−1 of integrated luminosity,
about 1.7× 108 Higgs bosons per experiment will have been produced by the end of the high-
luminosity LHC run [11]. If the J/ψ is reconstructed via its leptonic decays into muon pairs,
the effective branching ratio in the SM is Br(h → J/ψ γ → µ+µ−γ) = 1.8 ·10−7, meaning that
about 30 events can be expected per experiment. If also the decays into e+e− can be used,
then ATLAS and CMS can hope to collect a combined sample of about 120 events. A detailed
discussion of the experimental prospects for reconstructing these events over the background
can be found in [9]. Concerning the h → φγ decay mode, a reconstruction efficiency ϵφγ = 0.75
was assumed for the φγ final state in [10], which appears to us as an optimistic assumption.
In the SM one expects about 400ϵφγ events per experiment in this mode, meaning that the
two experiments can hope to look at a combined sample of several hundred events. Likewise,
in the SM one expects about 2900ϵρ0γ events per experiment in the decay mode h → ρ0γ.

In Figure 6 we show our predictions for the ratio of branching fractions (times 1000) defined
in (37) in the plane of the parameters κ̄V /κeffγγ and ¯̃κV /κeffγγ . We focus on the most interesting
cases V = φ, J/ψ and Υ(1S). The corresponding plots for V = ρ0, ω would look very similar
to that for V = φ (apart from the overall scale of the branching fractions), while the plots for
higher Υ(nS) resonances would look very similar to that for the Υ(1S) meson. For orientation,
we mention that a value of 0.4 in these plots corresponds to a h → V γ branching fraction of
about 10−6, assuming that the h → γγ branching fraction is SM like. This assumption will be
implicit whenever we quote absolute branching ratios below; otherwise the quoted numbers
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between the direct and indirect contributions to the h → Υ(nS) γ decay amplitudes, and as
a consequence the resulting branching ratios are roughly three orders of magnitude smaller
than the h → J/ψ γ branching fraction. For comparison, we note that the branching ratios
found in [32] read (2.79 +0.16

− 0.15) · 10−6 for J/ψ, (0.61 +1.74
− 0.61) · 10−9 for Υ(1S), (2.02 +1.86

− 1.28) · 10−9 for
Υ(2S) and (2.44 +1.75

− 1.30) · 10−9 for Υ(3S). We find good agreement with the results reported by
these authors except for the decay h → Υ(1S) γ, where their value is about a factor 7 smaller
than ours. The reason is that we do not neglect the imaginary part of the direct contribution
to ∆Υ(1S) in (42), which prevents
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∣
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from becoming arbitrarily small.

Our predictions may also be compared with the upper limits obtained from a recent first
analysis of these rare decays reported by the ATLAS collaboration. They are Br(h → J/ψ γ) <
1.5 ·10−3, Br(h → Υ(1S) γ) < 1.3 ·10−3, Br(h → Υ(2S) γ) < 1.9 ·10−3 and Br(h → Υ(3S) γ) <
1.3 · 10−3, all at 95% CL [20]. It will require an improvement by a factor 500 to become
sensitive to the h → J/ψ γ mode in the SM, while the SM branching fractions for the decays
h → Υ(nS) γ are out of reach at the LHC. Nevertheless, as we will discuss below, these decay
modes allow for very interesting new-physics searches. With 3 ab−1 of integrated luminosity,
about 1.7× 108 Higgs bosons per experiment will have been produced by the end of the high-
luminosity LHC run [11]. If the J/ψ is reconstructed via its leptonic decays into muon pairs,
the effective branching ratio in the SM is Br(h → J/ψ γ → µ+µ−γ) = 1.8 ·10−7, meaning that
about 30 events can be expected per experiment. If also the decays into e+e− can be used,
then ATLAS and CMS can hope to collect a combined sample of about 120 events. A detailed
discussion of the experimental prospects for reconstructing these events over the background
can be found in [9]. Concerning the h → φγ decay mode, a reconstruction efficiency ϵφγ = 0.75
was assumed for the φγ final state in [10], which appears to us as an optimistic assumption.
In the SM one expects about 400ϵφγ events per experiment in this mode, meaning that the
two experiments can hope to look at a combined sample of several hundred events. Likewise,
in the SM one expects about 2900ϵρ0γ events per experiment in the decay mode h → ρ0γ.

In Figure 6 we show our predictions for the ratio of branching fractions (times 1000) defined
in (37) in the plane of the parameters κ̄V /κeffγγ and ¯̃κV /κeffγγ . We focus on the most interesting
cases V = φ, J/ψ and Υ(1S). The corresponding plots for V = ρ0, ω would look very similar
to that for V = φ (apart from the overall scale of the branching fractions), while the plots for
higher Υ(nS) resonances would look very similar to that for the Υ(1S) meson. For orientation,
we mention that a value of 0.4 in these plots corresponds to a h → V γ branching fraction of
about 10−6, assuming that the h → γγ branching fraction is SM like. This assumption will be
implicit whenever we quote absolute branching ratios below; otherwise the quoted numbers
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and
∆Υ(1S) =

[

(0.948± 0.040) + i(0.130± 0.019)
] κb
κeffγγ

+ 0.0184− 0.0015i ,

∆Υ(2S) =
[

(1.014± 0.054) + i(0.141± 0.022)
] κb
κeffγγ

+ 0.0207− 0.0015i ,

∆Υ(3S) =
[

(1.052± 0.060) + i(0.148± 0.025)
] κb
κeffγγ

+ 0.0221− 0.0015i .

(43)

Approximate expressions for κ̄ρ0 , κ̄ω and κ̄φ have been given in (22) and (23). The constant
terms in the above results show the tiny power-suppressed corrections. Only for the Υ(nS)
states they reach the level of percent. Our complete expressions for the CP-odd coefficients ∆̃V

are also given in Appendix E. It is a good approximation to only keep the direct contributions
in these terms, which are likely to give rise to the dominant effects. Their coefficients are the
same as in the expressions above, but with κ̄q replaced by ¯̃κq and κb replaced by κ̃b.

It is interesting to compare our result for the quantities ∆V with corresponding expressions
obtained by other authors. From [10] one can extract ∆ρ0 = (0.095 ± 0.020) (2κ̄u + κ̄d)/3,
∆ω = (0.092± 0.021) (2κ̄u + κ̄d) and ∆φ = (0.130± 0.027)κ̄s, while from [32] one can obtain
∆J/ψ = (0.392±0.053)κ̄c, ∆Υ(1S) = (1.048±0.046)κb, ∆Υ(2S) = (1.138±0.053)κb and ∆Υ(3S) =
(1.175± 0.056)κb. These values are systematically higher than ours due to the fact that these
authors have not (or not fully) included QCD radiative corrections and RG evolution effects
in the direct contributions. For the Υ(nS) states it is important to keep the small imaginary
parts of the direct contributions, since in the SM the real parts almost perfectly cancel in the
combinations

∣

∣1−∆V

∣

∣ in (37). The result for ∆ω obtained in [10] misses the contribution from
ω−φ mixing and contains a sign mistake in front of κ̄d. Note also that our predictions for the
∆V parameters of light mesons are significantly more accurate than those obtained in [10].

4 Phenomenological results

We begin by quoting our benchmark results for the h → V γ branching fractions in the SM.
For a Higgs mass of mh = (125.09± 0.024) GeV, the SM value of the h → γγ branching ratio
is (2.28± 0.11) · 10−3 [57]. Using this result, we obtain for the decays into light vector mesons

Br(h → ρ0γ) = (1.68± 0.02fρ ± 0.08h→γγ) · 10−5 ,

Br(h → ωγ) = (1.48± 0.03fω ± 0.07h→γγ) · 10−6 ,

Br(h → φγ) = (2.31± 0.03fφ ± 0.11h→γγ) · 10−6 ,

(44)

where we quote separately the uncertainties due to the vector-meson decay constant fV and the
h → γγ branching ratio, the latter being the dominant source of uncertainty. Our predictions
are systematically lower and more accurate than those obtained in [10], where the values
Br(h → ρ0γ) = (1.9 ± 0.15) · 10−5, Br(h → ωγ) = (1.6 ± 0.17) · 10−6 and Br(h → φγ) =
(3.0 ± 0.13) · 10−6 are quoted. While the first two results are compatible with ours within
errors, there is a significant difference for the important mode h → φγ. For decays into heavy
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