

Inclusive searches for squarks and gluinos with the ATLAS detector

Yuto MINAMI

The University of Tokyo

On behalf of the ATLAS Collaboration

Introduction

- Supersymmetry (SUSY) is promising
- ♦ LHC is a hadron collider and cross-section of colored particle is very large

 \tilde{q} and \tilde{g} search is one of the main analyses at LHC-ATLAS experiment

- \diamondsuit In run1, we searched for SUSY signals in $\sqrt{s} = 8$ TeV collision using 20.3 fb⁻¹ of ATLAS data
- \diamondsuit In run2, we will search for SUSY signals in \lor s = 13 TeV collision

Run1 analysis

- ➤ analysis for large E_T event
- ➤ multijet analysis event for small E_T^{miss} event

Typical event selection for large E_Tmiss event

gluino signal event

Event selections for 0 lepton 4jet signal region (SR)

- 0 lepton
- ETmiss > 160 GeV
- 1st jet pT > 130 GeV
- Number of jet(pT>60 GeV) >=4
- $min\Delta\phi(jet_{i\leq 3}, ETmiss) > 0.4$
- $\min\Delta\phi(\text{jet}_{i>3}, \text{ETmiss})>0.2$
- E_T^{miss}/meff(4jet) > 0.25/
- $m_{eff} > 2200 \text{ GeV}$

Large E_Tmiss from LSP

reduce QCD multijet background

Large mass of gluino

LSP: undetected

 $\mathsf{m}_{\text{eff}}: E_T^{miss} + \sum_{k=0}^{N_j} p_{T_{iet,k}}$

Mainly from Z(->vv)+jets

expected SM background events in 4jet SR

Diboson

 $Z/\gamma^* + \text{jets}$ 2.9

W+jets 1.2

 $t\bar{t}(+EW) + \text{single top}$ 0.6 Z(vv)+jets BG is dominant

dominant

0.34

Background estimation for 0 lepton analysis

- ♦ Monte Carlo (MC) based Background (BG) estimation
- ➤ The high kinematic region is unreached region even for standard model process and MC need to be controlled with data
- Normalize MC events in control region (CR) which is orthogonal to signal region (SR)
 For Z(->vv)+jets, W+jets, and Top BGs

$$> N_{data}^{SR} = N_{MC}^{SR} \cdot \frac{N_{data}^{CR}}{N_{MC}^{CR}}$$

♦ Control region for MC normalization

SR process	CRs	CR process
Z (->vv) +jets	γCR	γ+jets
$W(->\ell v)$ +jets (ℓ is missed or τ jet)	W CR	W(->ℓv) +jets
Тор	Top CR	t → b W(->ℓv)

Run1 results with 0 lepton analysis

No significant excess was observed

 $m(\tilde{g}) \lesssim 1400 \text{ GeV}$ is excluded for $m(\tilde{\chi}_1^0)=0$

One-step decay

For the limit of one-step decay, 0 lepton & 1 lepton analyses are combined

limit for \tilde{q} one-step decay model

arXiv:1507.05525

limit for \tilde{g} one-step decay model

arXiv:1507.05525

Typical event selection for multijet analysis

♦ Long decay-chain -> Small E_Tmiss

Selection using large jet multiplisity

Event selections for 8jet signal region (SR)

- 0 lepton
- Number of jet (pT>50 GeV) =8
- 0 B -jet
- $E_{T}^{miss}/\sqrt{H_{T}} > 4 (VGeV) \leftarrow$

$$\mathbf{H}_{\mathrm{T}}: \sum_{k=0}^{N_{jet}} p_{T_{jet,k}}$$

reduce QCD multijet background

expected SM background events in 8jet SR

Total events before fit	36
$t\bar{t}$ before fit	3.5
W+jets before fit	2.9
Others before fit	2.4
Multi-jets	27 ± 3

multijets BG is dominant

ETmiss is from jet mis-measurement

BG estimation and run1 results

Dominant BG is QCD multijet events

Estimate with data-driven method

- ightharpoonup Use $E_T^{miss}/\sqrt{H_T}$ shape from low jet multiplicity region
 - ightharpoonup $E_T^{miss}/\sqrt{H_T}$ shape is almost invariant with jet multiplicity

For run2

From 8 TeV to 13 TeV

Cross section increases by a factor of ~20

In MSSM, $m(\tilde{q})$ has correlation with m(h)

 $\Longrightarrow \widetilde{g}$ search is important

Reach for gluino direct decay model

◇ Similar selection as run1 but with tighter cut
 ➤ m_{eff} was optimized at every integrated

luminosity

meff cut for each L _{int}		
\mathcal{L}_{int} (fb ⁻¹)	Mass of target gluinos (GeV)	m _{eff} (incl.) (GeV)
1	1350	> 2200
2	1350	> 2400
5	1500	> 2600
10	1650	> 2600

Unexplored region can be reached with 3σ in a few fb^{-1}

Reach for gluino one-step decay model

- ♦ 1 lepton is required for one-step decay model
- mT is used in addition to 0 lepton analysis

$$\mathsf{m}_\mathsf{T} : \sqrt{2 \cdot p_T^l \cdot E_T^{miss} \cdot (1 - \cos(\Delta \phi(l, E_T^{miss})))}$$

Unexplored region can be reached with 3σ in 2 fb⁻¹

A first data in 50 ns bunch spacing

- ♦ We have 13 TeV data with 78 pb⁻¹ integrated luminosity
- ♦ Non-collision backgrounds are well studied and under cotrol

Non-collision background make fake signal in tail of E_T^{miss} or meff

good agreement between data and MC

Conclusions

- \triangleright No significant excess was observed in $\sqrt{s} = 8$ TeV
 - ➤ Gluinos with a mass smaller than ~1.4 TeV are excluded for massless neutralino
- ➤ At vs =13 TeV collision 78 pb⁻¹data, good agreement between data and MC (or BG estimation)
 - Non-collision BGs are under control
 - BG estimation for early results is under control
- ➤ We can explore gluinos with mass ~1.5 TeV in 2015 with the ATLAS detector

Stay tuned for the Run2 results!

Back up

Other channels not introduced

analysis channels

mono jet search

0 lepton with Razor variable

2lepton (+Razor)

same sign 3 lepton

tau

0/1 lepton + 3 bjets

Cross sections of SUSY particles

Target signals and final states

- ♦ Assumption
 - $ightharpoonup ilde{g} ilde{g}$, $ilde{q} ilde{q}$, or $ilde{q} ilde{g}$ production
 - > R-parity conservation
 - $ightharpoonup \widetilde{t}$, \widetilde{b} searches will be presented in a dedicated talk by Pierfrancesco

E₋miss

- ♦ Decay modes and target final states
- - > 0 lepton & E_T^{miss} & jets
- - ➤ 1 lepton & E_T^{miss} & jets
- - ➤ 0 lepton & multijets

Background estimation for 0 lepton analysis

- ♦ Monte Carlo (MC) based Background (BG) estimation
 - ➤ Normalize MC events in control region (CR) which is orthogonal to signal region (SR) ➤ For Z(->vv)+jets, W+jets, Top BGs

$$> N_{data}^{SR} = N_{MC}^{SR} \cdot \frac{N_{data}^{CR}}{N_{MC}^{CR}}$$

♦ Control region for MC normalization

SR process	CRs	CR process	Selection
Z (->vv) +jets	γCR	γ+jets	- one photon - assume γ as $E_{T}^{\ miss}$ and apply the similar selections for SR
W(->ℓν) +jets (ℓ is missed or τ jet)	W CR	W(->ℓv) +jets	-one e/μ - treat e/μ as jet and apply the similar selections for SR - mT∈[30,100] and b-jet vetoed
Тор	Top CR	t → b W(->ℓv)	-one e/μ - treat e/μ as jet and apply the similar selections for SR - mT ∈ [30,100] and b-jet tagged

 $\mathsf{m}_\mathsf{T} : \sqrt{2 \cdot p_T^l \cdot E_T^{miss} \cdot (1 - \cos(\Delta \phi(l, E_T^{miss})))}$

Backbround estimation for 0 lepton analysis 2

♦ Data-Driven BG estimation

- > Jet smearing method
 - > For QCD multijet BGs (fake E_T^{miss} from mismeasurement)
- Measure jet response function with data
 - $\blacktriangleright \text{Response function}: \frac{\text{jet } p_T^{reconstcucted}}{\text{jet } p_T^{true}}$
- ➤ Smear all jets in low E_T^{miss} seed event
- ➤ Normalize smeared events in CR QCD
 - Inverted cuts of QCD events reduction cuts for SR

conceptual figure of jet smearing

$$\mathsf{m}_{\mathsf{eff}} : E_T^{miss} + \sum_{k=0}^{N_j} p_{T_{jet,k}}$$

Results of 0 lepton analysis (from 2jet region)

Limit from Run1 results

m_0 vs $m_{1/2}$ plane exclusion limit MSUGRA/CMSSM: $tan(\beta) = 30$, $A_{-} = -2m_{n}$, $\mu > 0$ m_{1/2} [GeV] All limits at 95% CL Expected (±1 σ_{exp}) Observed (±1 σ_{theor}^{SUS)} ATLAS 900 s = 8 TeV, L = 20 fb Expected (0+1)-lepton combination --- Expected 0/1-lepton + 3 b-jets + E_ 800 700 600 500 400 300 1000 2000 3000 4000 5000 m₀ [GeV]

Simplified model interpretation 2

Multijets analysis is important for two-step decay model

mSUGRA/CMSSM interpretation

For the limit of mSUGRA, 0-lepton and 1-lepton searches are combined

 $m_{1/2} \lesssim 500$ GeV is excluded for any scalar mass

Reach with 1 lepton analysis

2/fb

Variables	cut value
# of lepton (pT>35 GeV)	==1
2 nd jet pT (GeV)	> 200
4 th jet pT (GeV)	> 75
5 th jet pT (GeV)	> 25
mT(ℓ,E _T ^{miss})(GeV)	>350
ETmiss (GeV)	>200
m _{eff} (with lepton)(GeV)	> 1600

5/fb

Selections for SR

Variables	cut value
# of lepton (pT>35 GeV)	==1
1st jet pT (GeV)	> 150
5 th jet pT (GeV)	> 100
mT(&,E _T ^{miss})(GeV)	>250
ETmiss (GeV)	>200
m _{eff} (with lepton)(GeV)	> 1400

Signal Region for 1-lepton analysis

♦ Loose Signal Region only for small statistics

Selections for SR

Variables	cut value
lepton pT (GeV)	> 24
E _T miss (GeV)	> 100
4 th jet pT (GeV)	> 30

Good agreement between data and the background estimation

Signal Region for multijets analysis

♦ Loose Signal Region only for small statistics

Selections for SR

Variables	cut value
# of leptons	==0
Njet(pT > 50 GeV)	== 7

QCD multijet events are estimated from 6 jet CR

Good agreement between data and the background estimation

