## Associated Production of Squarks and Gauginos at 100 TeV

Bob Zheng

#### Based on 1506.02644 with Sebastian Ellis

Michigan Center for Theoretical Physics

SUSY 2015, August 27th

# I. Motivation

Several ways to interpret null LHC results:

Optimist :

SUSY will be found at LHC-13/14, just wait for enough data!

Pessimist:

Natural SUSY is disfavored  $\rightarrow$  nature probably not SUSY

Somewhere in the middle (this talk): SUSY manifest in nature, but out of LHC reach?

If LHC can't reach SUSY, maybe future colliders can?

## Discovery Prospects at a 100 TeV Proton Collider

Focus of this talk: future p-p collider,  $\sqrt{s} = 100 \text{ TeV}$ 

 $\label{eq:Higher CM energies} \ensuremath{\Rightarrow}\xspace \ensuremath{\mathsf{cnscr}}\xspace \ensuremath{\mathsf{cnscr}$ 



## Squark-Gaugino Associated Production at $\sqrt{s} = 100$ TeV

Previous studies focused on SUSY pair production channels, e.g.  $pp \rightarrow \tilde{q}\tilde{q}, \ pp \rightarrow \tilde{g}\tilde{g}, \ pp \rightarrow \tilde{\chi}^{\pm/0}\tilde{\chi}^{\pm/0}$ 

Our work instead considers squark-gaugino associated production



Will focus on spectra with heavy squarks and light gauginos

## Why Associated Production?

#### Spectra w/ mass hierarchies

Certain SUSY theories predict "mini-split" spectra, where

 $M_{
m Gaugino} \lesssim 10 imes m_{
m sfermion} \Rightarrow \sigma(pp o ilde{g} ilde{q}) \gg \sigma(pp o ilde{q} ilde{q})$ 

## Why Associated Production?

#### Spectra w/ mass hierarchies

Certain SUSY theories predict "mini-split" spectra, where

 $M_{
m Gaugino} \lesssim 10 imes m_{
m sfermion} \Rightarrow \sigma(pp o ilde{g} ilde{q}) \gg \sigma(pp o ilde{q} ilde{q})$ 

#### Strong vs Weak EW-ino Production

• 
$$pp \to \tilde{W}\tilde{W}: \sigma \sim \mathcal{O}(\alpha_W^2)$$
 vs  $pp \to \tilde{W}\tilde{q}: \sigma \sim \mathcal{O}(\alpha_W\alpha_s)$ 

• Hard jet from  $ilde{q} o q ilde{\mathcal{W}}$  helps with  $S/\sqrt{B}$ 

## Why Associated Production?

#### Spectra w/ mass hierarchies

Certain SUSY theories predict "mini-split" spectra, where

 $M_{
m Gaugino} \lesssim 10 imes m_{
m sfermion} \Rightarrow \sigma(pp o ilde{g} ilde{q}) \gg \sigma(pp o ilde{q} ilde{q})$ 

#### Strong vs Weak EW-ino Production

• 
$$pp \to \tilde{W}\tilde{W}: \sigma \sim \mathcal{O}(\alpha_W^2)$$
 vs  $pp \to \tilde{W}\tilde{q}: \sigma \sim \mathcal{O}(\alpha_W\alpha_s)$ 

• Hard jet from  $ilde{q} o q ilde{\mathcal{W}}$  helps with  $S/\sqrt{B}$ 

#### **Gluino-Neutralino Co-Annihilation Region**

• 
$$\tilde{g}\tilde{g} \rightarrow \text{ISR/FSR}$$
 jet + MET vs.  $\tilde{q}\tilde{g} \rightarrow \text{hard}$  jet + MET.  
If  $\tilde{q} - \tilde{g}$  mass splitting is sizeable, latter much easier to see

## II. Anatomy of Squark-Gaugino Production

## Kinematics of Heavy Squark Associated Production

I will focus on spectra with heavy squarks and light gauginos

Cartoon of associated production event:



High  $p_T$  final state particles arise as boosted squark decay products, with  $p_T \sim m_{\tilde{q}}/2$ 

### Kinematic Variables for Background Discrimination

Distributions below for events with  $\not\!\!\!E_T > 2$  TeV



Both spectra give  $\mathcal{O}(0.1)$  fb associated production xsecs

Estimate reach by taking points in the  $(M_{\tilde{q}}, M_{\text{Gaugino}})$  plane and:

1 Impose a set of spectrum-independent "basline" cuts

 Estimate reach by taking points in the  $(M_{\tilde{q}}, M_{\text{Gaugino}})$  plane and:

1 Impose a set of spectrum-independent "basline" cuts

Results presented in context of simplified models:

- Squark-Gluino: Gluino, Bino, 1st+2nd gen squarks
- Squark-Wino/Bino: Wino, Bino, 1st+2nd gen squarks

See backup slide for simulation details and description of baseline cuts

# III. Projected Reaches at $\sqrt{s} = 100 \text{ TeV}$

## Projected Reach: Squark-Gluino Production



**Gluino-neutralino co-annihilation region**:  $M_{\tilde{g}} \lesssim 8$  TeV. Excluded for  $M_{\tilde{q}} \lesssim 28$  TeV! (RH Plot)

## Projected Reach: Squark-Wino/Bino LSP Production

Projected reach at  $\sqrt{s} = 100$  TeV, 3 ab<sup>-1</sup> Red: 95% CL Blue: 5  $\sigma$ 



Compare to 1.2 TeV reach in Wino pair production via VBF Berlin, Lin, Low, Wang 1502.05044

## Projected Reach: Squark-Wino NLSP Production

Search strategy is robust even for NLSP Wino!

**Dashed**: 95% CL. **Solid**: 5  $\sigma$ 



## Summary

Squark-gluino:

At √s = 100 TeV w/ 3 ab<sup>-1</sup>, can discover 32 (25) TeV squarks for 2 (10) TeV gluino masses

• Can exclude gluino-neutralino co-ann. for < 28 TeV squarks

## Summary

Squark-gluino:

- At √s = 100 TeV w/ 3 ab<sup>-1</sup>, can discover 32 (25) TeV squarks for 2 (10) TeV gluino masses
- Can exclude gluino-neutralino co-ann. for < 28 TeV squarks

Squark-Wino/Bino:

- $\blacksquare$  Can discover Wino (Bino) masses up to 3 (1.5) TeV for  $\lesssim$  8 (6) TeV squark masses
- Stronger reach in Wino mass compared to Wino pair production if  $m_{\tilde{q}} \lesssim 10 \text{ TeV}$

## Summary

Squark-gluino:

- At √s = 100 TeV w/ 3 ab<sup>-1</sup>, can discover 32 (25) TeV squarks for 2 (10) TeV gluino masses
- Can exclude gluino-neutralino co-ann. for < 28 TeV squarks

Squark-Wino/Bino:

- $\blacksquare$  Can discover Wino (Bino) masses up to 3 (1.5) TeV for  $\lesssim$  8 (6) TeV squark masses
- Stronger reach in Wino mass compared to Wino pair production if  $m_{\tilde{q}} \lesssim 10$  TeV

Ass. prod. at  $\sqrt{s} = 100$  TeV can probe O(10) TeV squark masses. Comparable to bounds from low-energy flavor observables!

## Backup Slide

Simulation Details:

 Used backgrounds generated by the Snowmass collab. for a 100 TeV collider, neglecting pile-up effects

1308.1636

- Signal events generated with Madgraph 5, hadronization/showering via Pythia 6, detector effects simulated with Delphes-3
- Used Snowmass detector framework for 100 TeV p-p Collider 1309.1057

Baseline Cuts:

- Squark-gluino:  $H_T > 10$  TeV,  $\not\!\!\!E_T / \sqrt{H_T} > 20$  GeV<sup>1/2</sup>, 8 jets with  $p_T > 50(150)$
- Squark-Wino/Bino:  $p_T(j_1) > 2$  TeV,  $\not\!\!\!E_T > 3$  TeV,  $\Delta \phi(j_{1,2}, \not\!\!\!E_T) > 0.5$