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I. Motivation



Where is SUSY?

Several ways to interpret null LHC results:

Optimist :
SUSY will be found at LHC-13/14, just wait for enough data!

Pessimist:
Natural SUSY is disfavored → nature probably not SUSY

Somewhere in the middle (this talk):
SUSY manifest in nature, but out of LHC reach?

If LHC can’t reach SUSY, maybe future colliders can?



Discovery Prospects at a 100 TeV Proton Collider

Focus of this talk: future p-p collider,
√
s = 100 TeV

Higher CM energies ⇒ considerably better reach than LHC-14
See plenary talk by Lian-tao

Gluino pair prod.

Cohen et. al arxiv:1311.6480

Neutralino DM pair prod.

Low and Wang arxiv:1404.0682



Squark-Gaugino Associated Production at
√
s = 100 TeV

Previous studies focused on SUSY pair production channels,
e.g. pp → q̃q̃, pp → g̃ g̃ , pp → χ̃±/0χ̃±/0

Our work instead considers squark-gaugino associated production

Squark-gluino:

σ ∼ O(αs
2)

Squark-wino/bino:

σ ∼ O(αsαW )

Will focus on spectra with heavy squarks and light gauginos



Why Associated Production?

Spectra w/ mass hierarchies

Certain SUSY theories predict “mini-split” spectra, where

MGaugino . 10×msfermion ⇒ σ(pp → g̃ q̃)� σ(pp → q̃q̃)

Strong vs Weak EW-ino Production

pp → W̃ W̃ : σ ∼ O(αW
2) vs pp → W̃ q̃: σ ∼ O(αWαs)

Hard jet from q̃ → qW̃ helps with S/
√
B

Gluino-Neutralino Co-Annihilation Region

If g̃ and χ0-LSP nearly degenerate, χ0 can be DM!
(see e.g. Ellis, Luo, Olive arXiV:1503.07142)

g̃ g̃ → ISR/FSR jet + MET vs. q̃g̃ → hard jet + MET.
If q̃ - g̃ mass splitting is sizeable, latter much easier to see
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II. Anatomy of Squark-Gaugino
Production



Kinematics of Heavy Squark Associated Production

I will focus on spectra with heavy squarks and light gauginos

Cartoon of associated production event:

High pT final state particles arise as boosted squark decay
products, with pT ∼ mq̃/2



Kinematic Variables for Background Discrimination

Distributions below for events with /ET > 2 TeV

Squark-gluino: Leading jet pT

Mg̃ = 4 TeV, Mq̃ = 26 TeV

Squark-wino/bino: /ET/
√
HT

MW̃ = 2 TeV, Mq̃ = 9 TeV

Both spectra give O(0.1) fb associated production xsecs



Methodology for Estimating Reach

Estimate reach by taking points in the (Mq̃,MGaugino) plane and:

1 Impose a set of spectrum-independent “basline” cuts

2 Squark-Gluino: Scan over /ET and leading jet pT cuts
Squark-Wino/Bino: Scan over /ET and /ET/

√
HT cuts

Results presented in context of simplified models:

Squark-Gluino: Gluino, Bino, 1st+2nd gen squarks

Squark-Wino/Bino: Wino, Bino, 1st+2nd gen squarks

See backup slide for simulation details and description of baseline cuts
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III. Projected Reaches
at
√
s = 100 TeV



Projected Reach: Squark-Gluino Production

Projected reach at
√
s = 100 TeV, 3 ab−1

Red: 95% CL Blue: 5 σ
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Gluino-neutralino co-annihilation region: Mg̃ . 8 TeV.
Excluded for Mq̃ . 28 TeV! (RH Plot)



Projected Reach: Squark-Wino/Bino LSP Production

Projected reach at
√
s = 100 TeV, 3 ab−1

Red: 95% CL Blue: 5 σ
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Compare to 1.2 TeV reach in Wino pair production via VBF
Berlin, Lin, Low, Wang 1502.05044



Projected Reach: Squark-Wino NLSP Production

Search strategy is robust even for NLSP Wino!

Dashed: 95% CL. Solid: 5 σ
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Blue: Wino LSP

Green:
MWino −MLSP = 200 GeV

Red: MLSP = 100 GeV

Compare: Wino NLSP pair prod.

5σ reach: 1-3 TeV Wino.

Depends on Wino BR to h/W /Z
Gori, Jung, Wang, Wells 1410.6287



Summary

Squark-gluino:

At
√
s = 100 TeV w/ 3 ab−1, can discover 32 (25) TeV

squarks for 2 (10) TeV gluino masses

Can exclude gluino-neutralino co-ann. for < 28 TeV squarks

Squark-Wino/Bino:

Can discover Wino (Bino) masses up to 3 (1.5) TeV for . 8
(6) TeV squark masses

Stronger reach in Wino mass compared to Wino pair
production if mq̃ . 10 TeV

Ass. prod. at
√
s = 100 TeV can probe O(10) TeV squark masses.

Comparable to bounds from low-energy flavor observables!
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Backup Slide

Simulation Details:

Used backgrounds generated by the Snowmass collab. for a
100 TeV collider, neglecting pile-up effects

1308.1636

Signal events generated with Madgraph 5,
hadronization/showering via Pythia 6, detector effects
simulated with Delphes-3

Used Snowmass detector framework for 100 TeV p-p Collider
1309.1057

Baseline Cuts:

Squark-gluino: HT > 10 TeV, /ET/
√
HT > 20 GeV1/2, 8 jets

with pT > 50(150)

Squark-Wino/Bino: pT (j1) > 2 TeV, /ET > 3 TeV,
∆φ(j1,2, /ET ) > 0.5


