Composite Higgses

Brando Bellazzini IPhT - CEA/Saclay & Universite' Paris-Saclay

SUSY 2015, Lake Tahoe (CA), 27 August 2015

OUTLINE

- Compositeness and the Hierarchy Problem
- Composite Higgs
 - Higgs couplings
 - EWPTs
 - Higgs potential
 - Light resonances
- Conclusions

a blessing...

a blessing...

- perturbative expansion in E/Λ_{UV}
- few parameters, emerging patterns
- suppress dangerous operators

a blessing...

- perturbative expansion in E/Λ_{UV}
- few parameters, emerging patterns
- suppress dangerous operators

$$\mathcal{L}_{IR} = \mathcal{L}^{\Delta \le 4} + \sum_{\mathcal{O}} \frac{\mathcal{O}(x)}{\Lambda_{UV}^{\Delta - 4}}$$

fine-tuning $\mathcal{L}^{\Delta < 4} = c_h \Lambda_{UV}^2 |H|^2 + \dots$ Λ_{UV} Λ_{UV} Λ_{UV} Λ_{UV} Λ_{UV} Λ_{UV} Λ_{UV} Λ_{UV} Λ_{UV}

The Higgs isn't pointlike, it's composite

The Higgs isn't pointlike, it's composite

for E<< m* the Higgs is essentially point-like for E~ m* finite size becomes important for E>>1/m* there Higgs is transparent

The Higgs isn't pointlike, it's composite

for E>>1/m* there Higgs is transparent

strong sector

$$\begin{aligned} \mathcal{G} \to \mathcal{H} \supset \mathcal{G}_{EW} \\ \phi = \begin{cases} W_L^{\pm} Z_L h \end{pmatrix} \pi \text{ spin-0} \\ \rho_{\mu} & \text{ spin-1} \\ \Psi & \text{ spin-1/2} \end{cases} \end{aligned}$$

strong sector

$$\begin{aligned} \mathcal{G} \to \mathcal{H} \supset \mathcal{G}_{EW} \\ \phi = \begin{cases} W_L^{\pm} Z_L h \end{pmatrix} \pi \text{ spin-0} \\ \rho_{\mu} & \text{ spin-1} \\ \Psi & \text{ spin-1/2} \end{cases} \end{aligned}$$

weak sector $A_{\mu} = \underbrace{W_{\mu} \ B_{\mu}}_{\psi = \psi_{L} \ \psi_{R}}$

strong sector

strong sector

$$\begin{aligned}
\mathcal{G} \to \mathcal{H} \supset \mathcal{G}_{EW} \\
\phi = \begin{cases}
W_L^{\pm} Z_L \ h \end{pmatrix} \pi \text{ spin-0} \\
\rho_{\mu} & \text{ spin-1} \\
\Psi & \text{ spin-1/2}
\end{aligned}$$

$$\begin{aligned}
g \\
\text{weak sector} \\
A_{\mu} = W_{\mu} B_{\mu} \\
\psi = \psi_L \psi_R
\end{aligned}$$

strong sector $\mathcal{G} \to \mathcal{H} \supset \mathcal{G}_{EW}$ $\begin{cases} W_L^{\pm} Z_L h \rightarrow \pi \text{ spin-0} \\ \rho_\mu & \text{ spin-1} \\ \Psi & \text{ spin-1/2} \end{cases}$ gweak sector $W_{\mu} \ B_{\mu}$ A_{μ} $\psi_L \psi_R$

EWSB triggered by vacuum misalignment

Georgi, Kaplan in the 80s

strong sector $\mathcal{G} \to \mathcal{H} \supset \mathcal{G}_{EW}$ $\begin{cases} W_L^{\pm} Z_L h \rightarrow \pi \text{ spin-0} \\ \rho_\mu & \text{ spin-1} \\ \Psi & \text{ spin-1/2} \end{cases}$ ${\mathcal H}$ gbeyond SM effects controlled by v/f=sin<h> weak sector decoupling limit f—>infty $W_{\mu} B_{\mu}$ A_{μ} minimal composite Higgs: SO(5)/SO(4) Agashe, Contino, Pomarol 0412089 $SU(3)/SU(2) \times U(1)$ Contino, Nomura, Pomarol 0306259

EWSB triggered by vacuum misalignment

Georgi, Kaplan in the 80s

non-linear realisation of G: $f^2 |\partial e^{i\pi/f}|^2 = (\partial \pi)^2 + \frac{(\pi \partial \pi)^2}{f^2} + \frac{\pi^2 (\pi \partial \pi)^2}{f^4} + \dots$

non-linear realisation of G: $f^2 |\partial e^{i\pi/f}|^2 = (\partial \pi)^2 + \frac{(\pi \partial \pi)^2}{f^2} + \frac{\pi^2 (\pi \partial \pi)^2}{f^4} + \dots$ $|D_\mu H|^2 + \frac{c_H}{2f^2} (\partial_\mu |H|^2)^2 + \frac{c'_H}{2f^4} |H|^2 (\partial_\mu |H|^2)^2 + \dots$ SILH-lagrangian

Giudice, Grojean, Pomarol, Rattazzi 0703164

non-linear realisation of G:
$$f^2 |\partial e^{i\pi/f}|^2 = (\partial \pi)^2 + \frac{(\pi \partial \pi)^2}{f^2} + \frac{\pi^2 (\pi \partial \pi)^2}{f^4} + \dots$$

 $|D_{\mu}H|^2 + \frac{c_H}{2f^2} (\partial_{\mu}|H|^2)^2 + \frac{c'_H}{2f^4} |H|^2 (\partial_{\mu}|H|^2)^2 + \dots$
 $\kappa_V = 1 - c_H \left(\frac{v}{f}\right)^2$
Giudice, Grojean, Pomarol, Rattazzi 0703164

some tuning in the model

EWPTS

power-counting: 1mass-1coupling

$$\mathcal{L}_{EFT} = \frac{m_*^4}{g_*^2} \times \widehat{\mathcal{L}}\left(\frac{g_*\phi}{m_*}, \frac{g_*\Psi}{m_*^{3/2}}, \frac{\partial}{m_*}, \frac{gA_{\mu}}{m_*}, \frac{\lambda\psi}{m_*^{3/2}}\right)$$

power-counting: 1mass-1coupling

partial compositeness

$$\mathcal{L}_{EFT} = \frac{m_*^4}{g_*^2} \times \widehat{\mathcal{L}} \left(\frac{g_* \phi}{m_*}, \frac{g_* \Psi}{m_*^{3/2}}, \frac{\partial}{m_*}, \frac{g A_{\mu}}{m_*}, \frac{\lambda \psi}{m_*^{3/2}} \right)$$
$$g J_{\mu} A^{\mu} + \lambda \bar{\psi} \mathcal{O} \qquad \text{e.g. Yukawas:} \left(\frac{\lambda_L \lambda_R}{g_*} \right) \bar{\psi}_L \psi_R H$$

power-counting: 1mass-1coupling

partial compositeness

$$\mathcal{L}_{EFT} = \frac{m_*^4}{g_*^2} \times \widehat{\mathcal{L}} \left(\frac{g_* \phi}{m_*}, \frac{g_* \Psi}{m_*^{3/2}}, \frac{\partial}{m_*}, \frac{g A_{\mu}}{m_*}, \frac{\lambda \psi}{m_*^{3/2}} \right)$$
$$g J_{\mu} A^{\mu} + \lambda \bar{\psi} \mathcal{O} \qquad \text{e.g. Yukawas:} \left(\frac{\lambda_L \lambda_R}{g_*} \right) \bar{\psi}_L \psi_R H$$

top-partners are charged under SM

power-counting:
Imass-1coupling
$$\mathcal{L}_{EFT} = \frac{m_*^4}{g_*^2} \times \widehat{\mathcal{L}} \left(\frac{g_* \phi}{m_*}, \frac{g_* \Psi}{m_*^{3/2}}, \frac{\partial}{m_*}, \frac{gA_{\mu}}{m_*}, \frac{\lambda \psi}{m_*^{3/2}} \right)$$
partial compositeness
$$g J_{\mu} A^{\mu} + \lambda \overline{\psi} \mathcal{O} \quad \text{e.g. Yukawas:} \left(\frac{\lambda_L \lambda_R}{g_*} \right) \overline{\psi_L} \psi_R H$$
top-partners are charged under SM
$$(\gamma \times \left(\frac{e^2}{m_*^2} \right) |H|^2 F_{\mu\nu}^2$$

$$c_{\gamma} \sim O(1) ? \text{ NO!}$$

$$Q = T_L^3 + T_R^3 + X$$

$$[Q, T_h] = 0$$

$$\downarrow$$

$$c_{\gamma} \sim \frac{\lambda_t^2}{16\pi^2} \text{ spurion of shift-sym}$$

Light Higgs= Light top partners

Light Higgs= Light top partners

Light Higgs= Light top partners

irreducible fine-tuning $\Delta_{v^2} = \frac{\delta v^2}{v_{\rm exp}^2} = \frac{f^2}{v^2} \times \left(\frac{a}{b}\right) \gtrsim (10\%)^{-1} \qquad \Delta_{m_H^2} = \frac{g_{SM}^2}{8\pi^2} \left(\frac{m_*}{m_h}\right)^2 = \left(\frac{m_*}{500}\right)^2$

a	b	g_*	$\Delta = \Delta_{\mu^2} \times \Delta_{\lambda}$

	a	b	g_*	$\Delta = \Delta_{\mu^2} \times \Delta_{\lambda}$
"Bona fide" Higgs	O(1)	O(1)	$\approx 4\pi$	0.01%

	a	b	g_*	$\Delta = \Delta_{\mu^2} \times \Delta_{\lambda}$
"Bona fide" Higgs	O(1)	O(1)	$\approx 4\pi$	0.01%
Little Higgs	O(1)	$16\pi^2/g_*^2$	$\approx g_{SM}$	0.4 - 1%

	a	b	g_*	$\Delta = \Delta_{\mu^2} \times \Delta_{\lambda}$
"Bona fide" Higgs	O(1)	O(1)	$\approx 4\pi$	0.01%
Little Higgs	O(1)	$16\pi^2/g_*^2$	$pprox g_{SM}$	0.4 - 1%
"Holographic" Higgs	O(1)	O(1)	1 - 4	5 - 10%

	\boldsymbol{a}	b	g_*	$\Delta = \Delta_{\mu^2} \times \Delta_{\lambda}$
"Bona fide" Higgs	O(1)	O(1)	$\approx 4\pi$	0.01%
Little Higgs	O(1)	$16\pi^2/g_*^2$	$pprox g_{SM}$	0.4 - 1%
"Holographic" Higgs	O(1)	O(1)	1 - 4	5 - 10%
Twin Higgs	g_{SM}^2/g_*^2	g_{SM}^2/g_*^2	$1-4\pi$	5 - 10%

	a	b	g_*	$\Delta = \Delta_{\mu^2} \times \Delta_{\lambda}$
"Bona fide" Higgs	O(1)	O(1)	$\approx 4\pi$	0.01%
Little Higgs	O(1)	$16\pi^2/g_*^2$	$pprox g_{SM}$	0.4 - 1%
"Holographic" Higgs	O(1)	O(1)	1 - 4	5 - 10%
Twin Higgs	g_{SM}^2/g_*^2	g_{SM}^2/g_*^2	$1-4\pi$	5 - 10%
tra spurion of Z2-breaking: $\delta m_H^2 = \frac{g_{SM}^2}{q_*^2} \times \frac{g_{SM}^2}{16\pi^2} m_*^2 \sim \frac{g_{SM}^4 f^2}{16\pi^2}$ tuning unrelated to colored resonance				

 $g_{
ho} pprox 3$ can fit ATLAS excess at $m_{
ho} pprox 2\,{
m TeV}$

see e.g.Thamm, Torre, Wulzer, 1506.08688

CONCLUSIONS

- PNGB-Higgs can naturally be light and narrow
- Decoupling limit v/f —> infty where SM is recovered
- Fine-tuning worsens with larger f and g*
- Predictions and largest effects:
 - strong double H production
 - 10% corrections to tree-level Higgs couplings
 - small h—> gluons and photons but (possibly large) h—> Z gamma
 - Iight vector-like coloured partners expected below 1.5 TeV

Thank you!

back-up slides

taken from Thamm, Torre, Wulzer arXiv:1502.01701

- theoretically excluded $\xi \leq 1$
- LHC8 at 8 TeV with 20 fb⁻¹
 LHC at 14 TeV with 300 fb⁻¹
 HL-LHC at 14 TeV with 3 ab⁻¹
- di-leptons more sensitive for small g_{ρ}
- di-boson more sensitive for large g_{ρ}
- increase in \sqrt{s} : improves mass reach
- increase in L: improves g_{ρ} reach
- resonances too broad for large g_{ρ}

taken from Thamm, Torre, Wulzer arXiv:1502.01701

theoretically excluded $\xi \leq 1$ LHC8 at 8 TeV with 20 fb⁻¹ LHC at 14 TeV with 300 fb⁻¹ HL-LHC at 14 TeV with 3 ab⁻¹ di-leptons more sensitive for small g_{ρ} di-boson more sensitive for large g_{ρ} increase in \sqrt{s} : improves mass reach increase in L: improves g_{ρ} reach resonances too broad for large g_{ρ}

