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Motivation for this work

Why is the scale of electroweak symmetry breaking (EWSB) v = 246 GeV,

when its natural value is at some large cutoff scale Λ≫ v?

1. The standard paradigm is “naturalness” of the electroweak symmetry

breaking mechanism. Realizations include TeV-scale supersymmetry, composite

Higgs models, . . .

2. Given the absence of experimental evidence for physics beyond the Standard

Model (BSM), there is an alternative approach where the mass scale of EWSB

is finely tuned due to environmental selection in a multiverse.

In the Standard Model (SM), one tuning is required to achieve a Higgs mass

at 125 GeV. If additional Higgs states are present in some generic BSM theory

in which the EWSB scale is set by a single fine-tuning, then one would expect

these non-minimal Higgs boson masses to reside near Λ in the absence of a

natural explanation of the EWSB scale.



On the other hand, suppose additional Higgs scalars are discovered with masses

below 1 TeV. What is one to conclude?

1. The simplest explanation is that the “natural” dynamics responsible for the

EWSB scale also provides for non-minimal Higgs states with masses of O(v).
The MSSM provides an example of this.

2. In contrast, the non-minimal Higgs scalars are unlikely to be light because of

selection effects, as suggested by the decoupling limit of many BSM theories.

We wish to explore a third possibility in which one fine-tuning is required to

obtain the EWSB scale and the Higgs mass of 125 GeV. But, additional Higgs

scalars are also light due to an approximate symmetry that links their mass

scale to the scale of EWSB. We call a two Higgs doublet model (2HDM) of

this type partially natural, in which one fine-tuning is sufficient to obtain the

entire Higgs spectrum with masses of O(v).



Outline

• The general 2HDM and its fine-tuning conditions

• Symmetries of the 2HDM scalar potential

– Exceptional region of parameter space (with one fine-tuning condition)

• Extending the Yukawa sector

– The need for mirror fermions

– Softly-broken symmetries

– The 2HDM vacuum state and the corresponding scalar spectrum

– Phenomenological constraints and implications

• Final comments

– Supersymmetric extensions

– Challenges for split SUSY with a pair of light Y = ±1 Higgs doublets



The Two-Higgs Doublet Model (2HDM)

The scalar fields of the 2HDM are complex SU(2) doublet, hypercharge-one

fields, Φ1 and Φ2, where the corresponding vacuum expectation values (vevs)

are 〈Φi〉 = |vi|eiξi/
√
2, and v2 ≡ |v1|2+ |v2|2 = (246 GeV)2. The most general

renormalizable SU(2)×U(1) scalar potential is given by
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where m2
12 and λ5, λ6 and λ7 are potentially complex; all other scalar potential

parameters are real.

After spontaneous symmetry breaking of SU(2)×U(1) to U(1)EM, there are five

physical Higgs states—three neutral scalars and a charged Higgs pair. One of

these scalars is identified with the observed Higgs boson with mh = 125 GeV.

In the SM, one fine-tuning is required to achieve the observed Higgs mass.



How many tunings are needed in the 2HDM?

If the masses of all the other physical scalars are also of order the electroweak

scale, how many additional fine-tunings of the squared-mass parameters are

required?

In the most general 2HDM, the fields Φ1 and Φ2 are indistinguishable. Thus,

it is always possible to define two orthonormal linear combinations of the two

doublet fields without modifying any prediction of the model.

The Higgs basis

It is convenient to define new Higgs doublet fields:
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where 〈H0
1〉 = v/

√
2 and 〈H0

2〉 = 0 and v = 246 GeV. This is the Higgs basis.



In the Higgs basis, the scalar potential is:
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where Y1, Y2 and Z1, . . . , Z4 are real and Y3, Z5, Z6 and Z7 are potentially

complex. Assuming that |λi|/(4π) <∼ O(1) (so that the scalar potential satisfies

unitarity constraints at tree-level), it follows that the Zi cannot become

arbitrarily large.

After minimizing the scalar potential,

Y1 = −1
2Z1v

2 , Y3 = −1
2Z6v

2 .

One fine tuning of the parameter Y1 is required to obtain v = 246 GeV. The

scalar potential minimum condition guarantees that Y3 ∼ O(v2). But, to

obtain all Higgs masses of O(v), a second fine tuning Y2 ∼ O(v2) is required.



The physical Higgs masses

In the alignment limit where one of the neutral Higgs bosons h is SM-like, we

have to good approximation m2
h ≃ 1

2Z1v
2, which yields Z1 ≃ 0.26. This means

that Y1 ∼ O(v2), which constitutes the first fine tuning. Note that Y3 ∼ O(Y1)

by virtue of the scalar potential minimum conditions.

The charged Higgs boson squared mass is m2
H± = Y2 +

1
2Z3v

2. Thus, a second

fine tuning, Y2 ∼ O(v2) is requires to ensure that the charged Higgs mass is of

order the electroweak scale.

The sum of the squared-masses of the three neutral Higgs bosons is equal to

the trace of the corresponding squared-mass matrixM2
H,

TrM2
H = 2Y2 + (Z1 + Z3 + Z4)v

2 .

Having performed the second fine tuning of Y2, we are now assured that all

scalar masses are of order the electroweak scale.



Removing the second fine-tuning condition with a symmetry

The scalar potential of the most general 2HDM is governed by 11 free

parameters: 1 vev, 8 real parameters and two relative phases. It is possible

to impose a discrete or continuous global symmetry on the Higgs potential

[beyond the hypercharge U(1)Y ] to reduce the number of 2HDM parameters.

symmetry m2
22 m2

12 λ2 λ3 λ4 λ5 λ6 λ7

Z2 0 0 0

Π2 m2
11 real λ1 real λ∗

6

U(1) 0 0 0 0

SO(3) m2
11 0 λ1 λ1 − λ3 0 0 0

CP1 real real real real

CP2 m2
11 0 λ1 −λ6

CP3 m2
11 0 λ1 λ1 − λ3 − λ4 (real) 0 0

Classification of 2HDM scalar potential symmetries and their impact on the coefficients of the scalar potential in

a basis where the symmetry is manifest [Ivanov; Ferreira, Haber and Silva].



Higgs family symmetries

Z2 : Φ1 → Φ1, Φ2 → −Φ2

Π2 : Φ1 ←→ Φ2

U(1)PQ [Peccei-Quinn]: Φ1 → e−iθΦ1, Φ2 → eiθΦ2

SO(3): Φa → UabΦb , U ∈ U(2)/U(1)Y

Generalized CP (GCP) transformations

CP1 : Φ1 → Φ∗
1, Φ2 → Φ∗

2

CP2 : Φ1 → Φ∗
2, Φ2 → −Φ∗

1

CP3 : Φ1 → Φ∗
1cθ+Φ∗

2sθ, Φ2 → −Φ∗
1sθ+Φ∗

2cθ, for 0 < θ < 1
2π

where cθ ≡ cos θ and sθ ≡ sin θ. Some observations of note:

1. Π2 symmetry is equivalent to Z2 symmetry in a different basis.

2. Applying Z2 and Π2 simultaneously ⇐⇒ CP2 in a different basis.

3. Applying U(1)PQ and Π2 simultaneously ⇐⇒ CP3 in a different basis.



Exceptional region of the parameter space (ERPS)

An exceptional region of the 2HDM parameter space (first identified by

Davidson and Haber) consists of:

ERPS : m2
22 = m2

11 , m2
12 = 0 , λ1 = λ2 , λ7 = −λ6

The corresponding conditions in the Higgs basis are,

Y2 = Y1 , Y3 = Z6 = Z7 = 0 , Z1 = Z2 .

Indeed, in the ERPS one of the two fine-tuning conditions is removed.

The ERPS includes SO(3), CP3 (equivalent to U(1)PQ⊗Π2 in another basis),

and CP2 (equivalent to Z2 ⊗Π2 in another basis). To avoid an extra massless

Goldstone boson, one must softly-break the SO(3) and CP3 symmetries.

However, none of the ERPS models can be extended to the Yukawa interactions

without generating a massless quark or some other phenomenologically

untenable feature [P.M. Ferreira and J.P. Silva, Eur. Phys. J. C 69, 45 (2010)].



2HDM with mirror fermions

To try to save the Z2 ⊗ Π2 discrete symmetry model we introduce mirror

fermions. Focus first on the top sector. SM fermions are denoted by lower

case letters (e.g. left-handed doublet fields q and right-handed singlet fields u

and d); mirror fermions by upper case letters.

We take the top sector to transform under the discrete symmetries as follows,

Π2 : q ⇔ q, u⇔ U, U ⇔ U ,

Z2 : q ⇔ q, u⇔ −u, U ⇔ U, U ⇔ U .

where U is in the representation conjugate to U (to avoid anomalies).

The Yukawa couplings consistent with the Z2 ⊗Π2 discrete symmetry are

LYuk ⊃ yt (qΦ2u+ qΦ1U) + h.c.



The model is not phenomenologically viable due to experimental limits on

mirror fermion masses. Thus, we introduce a vectorlike mass,

Lmass ⊃MUUU + h.c.

which preserves the Z2 but explicitly breaks the Π2 discrete symmetry. This

symmetry breaking is soft, so that m2
22 − m2

11 is protected from quadratic

sensitivity to the cutoff scale Λ.

The other SM fermions can also be included by introducing the appropriate

mirrors such that

Π2 : d⇔ D, e⇔ E, D ⇔ D, E ⇔ E

Z2 : d⇔ −d, e⇔ −e, D ⇔ D, E ⇔ E.

The corresponding Yukawa couplings and vectorlike fermion masses are

L ⊃ yb (qΦ
∗
2d+ qΦ∗

1D) + yτ (ℓΦ
∗
2e+ ℓΦ∗

1E) +MDDD +MEEE .



Effects of the softly-broken Π2 discrete symmetry

Φ2 Φ2

q

u

Φ1 Φ1

q

U

∆m2 ≡ m2
22 −m2

11 ∼ −
3y2tM

2
U

4π2
ln(Λ/MU) ,

neglecting finite thresholds proportional to M2
U . Since Z2 is unbroken (or

at worst spontaneously broken if v2 6= 0), m2
12 is not generated in this

approximation. Assuming that ln(Λ/MU) is not much larger than O(1), we
see that there is no second fine tuning if ∆m2 <∼ O(v2), or roughly

MU <∼
πv2

mt

,

which is satisfied for MU less than a few TeV. Note that the other mirror

masses are far less constrained since the corresponding SM fermion masses are

significantly less than mt.



Integrating out the mirror fermions below the scale MU , one generates a

splitting between λ1 and λ2. Above the scale M , the diagrams

Φ2

Φ2

u

u

q q

Φ2

Φ2

Φ1

Φ1

U

U

q q

Φ1

Φ1

contribute equally to λ2(Φ
†
2Φ2)

2 and λ1(Φ
†
1Φ1)

2, respectively. Below the scale

MU , the diagrams with internal U lines decouple, which then yields

∆λ ≡ |λ1 − λ2| ∼
3y4t
4π2

log(MU/mt) ∼ 0.1 ,

for MU ∼ 1 TeV. Note: λ6 and λ7 are not generated due to the unbroken Z2.

Henceforth, we write m2
11 and m2

22 (at the scale mt) in terms of

m2 ≡ 1
2(m

2
11 +m2

22) , ∆m2 ≡ m2
22 −m2

11 .

We denote tan β ≡ v2/v1 and we neglect the effects of ∆λ which are small.



Local minima of the 2HDM scalar potential

We define λ ≡ λ1 = λ2 and

λ345 = λ3 + λ4 + λ5 , R =
λ345

λ
,

and demand that λ > 0 and R > −1 to ensure that the vacuum is bounded

from below. Solving for the potential minimum, there are two possible phases:

1. The inert phase

Assuming that ∆m2 < −2m2, the Higgs vacuum is

〈

Φ0
1

〉2
= 1

2v
2 = −

(

m2 + 1
2∆m2

λ

)

〈Φ2〉 = 0.

In this case, Z2 is unbroken by the vacuum.



2. The mixed phase∗

If both v1 6= 0 and v2 6= 0, then the Z2 is spontaneously broken. Minimizing

the scalar potential yields

m2 = −1
4λ(1 +R)v2 , tan β =

√

1− ǫ

1 + ǫ
,

where

ǫ ≡ 2∆m2

λ(1−R)v2
.

The positivity of v21 and v22 and the curvature at the extremum requires

|R| < 1 , |ǫ| < 1 .

Given the constraint on R, the constraint on ǫ can also be written

m2 < 0 , ∆m2 < −2m2

(

1−R

1 +R

)

.

∗There is a parameter regime in which both the inert phase and the mixed phase coexist. However, one can

check that in this case, the mixed phase minimum is deeper than the inert phase minimum.



Scalar spectrum of the inert phase

The physical neutral Higgs bosons are eigenstates of CP.

m2
h = λv2 ,

m2
H = −1

2λv
2(1−R)−∆m2 ,

m2
A = m2

H − λ5v
2 ,

m2
H± = m2

H − 1
2(λ4 + λ5)v

2 ,

where the couplings of h are precisely those of the SM Higgs boson.

Since we are interested in the case where all Higgs boson masses are of O(v),
we restrict ∆m2 ∼ O(v2) as previously stated. Of course, if MU ≫ v, then

we can make −∆m2 arbitrarily large (which is an allowed regime of the inert

phase), in which case H, A and H± become arbitrarily heavy.



Scalar spectrum of the mixed phase

In the convention where the ratio of the vevs is real, it follows from the scalar

potential minimum conditions that λ5 ≤ 0. The Higgs mass spectrum is:

m2
h,H = 1

2λv
2(1∓

√

R2 + (1−R2)ǫ2) ,

m2
A = −λ5v

2 ,

m2
H± = −1

2(λ4 + λ5)v
2 .

Requiring h to be SM-like, it follows that | cos(β − α)| ≪ 1 [the so-called

alignment limit], assuming that†

−1 < R < − ǫ2

1− ǫ2
,

and α− β is the CP-even mixing angle in the Higgs basis, with

sin(β − α) cos(β − α) =
ǫ(ǫ2 − 1)(1−R)

2
√

R2 + ǫ2(1−R2)
.

†Otherwise, H is SM-like and | sin(β − α)| ≪ 1.



When ǫ and | cos(β − α)| are small [in a convention where sin(β − α) ≥ 0],

then

cos(β − α) ≃ −ǫ(1−R)

2|R| .

In particular, the alignment limit favors small |ǫ|, which yields tan β ∼ O(1).
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It is convenient to rewrite mH in terms of mh,

m2
H = m2

h

(

1 +
√

R2 + (1−R2)ǫ2

1−
√

R2 + (1−R2)ǫ2

)

.
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The shaded regions are consistent with the Higgs couping fits taken from N. Craig et al., JHEP 1506, 137 (2015).



Phenomenological constraints and implications

• Below the scale of MU , the effective theory is that of a Type-I 2HDM.

• In the inert phase, the lightest scalar in the Φ2 doublet is a stable dark
matter candidate. There is no mixing of U with SM quarks due to the
exact discrete Z2 symmetry. But U → qΦ2 is a possible decay, which can
be discovered in the tt̄+missing energy channel. Current LHC limits yield
mU >∼ 500 GeV for mH <∼ 150 GeV.

• In the mixed phase, the discrete Z2 symmetry is broken and U can mix
with the top quark. In this case U → Wb, Zt and ht are possible decays.
LHC experimental limits require mU >∼ 700 GeV if no other decay modes
are present. If tH and bH+ are kinematically allowed, they will dominate
and the experimental limits must be reconsidered.

• In the regime of the mixed phase where the non-minimal Higgs states have
masses below 1 TeV, tanβ is moderate, of order a few. This is a very
difficult regime for the LHC. Perhaps H → hh and the production of tt̄H,
tt̄A and tb̄H− provide the best opportunities for discovery.



Final Comments—Supersymmetric Extensions

1. Given the non-observation of supersymmetry (SUSY), some theorists have

considered SUSY models with a SUSY-breaking scale MSUSY ≫ 1 TeV. Since

SUSY models contain (at least) two Higgs doublets, one can now pose our

Higgs sector fine-tuning question in a SUSY context.

• In the SUSY Higgs sector, Hd is a hypercharge −1 Higgs doublet and Hu is

a hypercharge +1 Higgs doublet. The superpotential is holomorphic in the

corresponding Higgs superfields, and this restricts the model building.

• To obtain a SUSY extension of our the partially natural 2HDM, one must

add two mirror Higgs doublet superfields H ′
u and H ′

d. The Higgs sector is

now a 4HDM, with a superpotential whose quadratic terms are of the form

V ⊃ m2
1(|Hd|2 + |H ′

d|2) +m2
2(|Hu|2 + |H ′

u|2)−m2
3(HuHd +H ′

uH
′
d) .

Two linear combinations of fields can be made light with one tuning.



2. Can one implement sufficient discrete symmetries (perhaps softly broken)

on the minimal SUSY Higgs sector so that Hu and Hd are light fields? Since

Hu and Hd have opposite hypercharge, the mirror symmetry that interchanges

Hu and Hd is now a GCP symmetry.

All attempts to construct such a model have failed. It seems that one inevitably

encounters hard symmetry breakings, and the desired symmetries cannot be

protected at low energies.

3. Are these hard symmetry breakings necessarily fatal? Once we accept the

possibility of hard breaking, we might as well discard the mirror fermions and

examine this question in the context of the split MSSM. In some special cases,

it may be possible to find scenarios where the corrections to m2
22−m2

11 remain

small enough such that both Higgs doublets remain light compared to the

mass scale that governs the squarks. In such scenarios the higgsino states are

expected to be as light as the non-minimal Higgs states, and the staus are also

expected to be light, at most an order of magnitude heavier.


