
Searches for associated tH production
with the CMS experiment

q

b

q′

t

HW

Andrey Popov1,2

On behalf of the CMS collaboration

1CP3 UCL, Louvain-la-Neuve, BE

2also at SINP MSU, Moscow, RU

II CMS single-top workshop,
Naples, Italy,
4–5 Dec 2014



Associated tH production

• Two dominant diagrams for tHq production in SM:
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◦ Destructive interference in SM ⇒ cross section 18.3 fb†

◦ With an inverted sign of Yukawa coupling yt = −1 the interference is
constructive, σ = 234 fb† (×13 enhancement)
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†Farina et al., JHEP 05 (2013) 022

http://arxiv.org/abs/1211.3736


Negative top-quark Yukawa coupling

• Couplings measurements by ATLAS and CMS
favour yt ≈ +1
◦ Sensitivity to the sign comes from H → γγ only
◦ Results assume that no new physics affect

Hgg and Hγγ loop-induced couplings

• If BSM contributions to Hgg and Hγγ are
considered, yt ≈ −1 is well allowed
◦ Bottom fig.: Combined constraints from ATLAS,

CMS, and Tevatron marginalised over possible
BSM contributions in the loops

• Study of tHq production allows to solve
the twofold ambiguity
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Searches for tHq production with negative yt

• CMS performed searches for tHq production with negative yt
◦ H → γγ and H → bb̄ decay channels
◦ Focused on the yt = −1 case as couplings affect kinematics
◦ Whole 8 TeV dataset utilised (∼ 20 fb−1)

• H → γγ channel (CMS PAS HIG-14-001)
◦ Small branching ratio but high purity
◦ An additional enhancement of B(H → γγ) by a factor of 2.4
◦ Cut-and-count analysis

• H → bb̄ channel (CMS PAS HIG-14-015)
◦ Largest branching ratio but overwhelming tt̄ background
◦ Complex MVA-based analysis
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http://cds.cern.ch/record/1669861
http://cds.cern.ch/record/1952829


Search in the H → γγ channel
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Event preselection
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• Two photons
◦ pT (γ1) > 50 ·mγγ/120
◦ pT (γ2) > 25 GeV
◦ Eff. on signal events is 98%

• Exactly one isolated µ or e
◦ pT > 10 GeV

• A b-quark jet
◦ pT > 20 GeV

• A forward recoil jet
◦ pT > 20 GeV, |η| > 1

• Consider mass window 122 < mγγ < 128 GeV as the signal region
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Resonant backgrounds

• Backgrounds with a Higgs boson contribute to the mγγ peak
◦ tt̄H (dominant), VH, H + jets

• To suppress tt̄H, a likelihood product discriminator (LD) is constructed
◦ Variables: # jets, mT (t), η(q′), ∆η(`, q′), lepton charge

• A cut on value of LD is added to event selection

• Expected yields in the mγγ window after the
full selection:
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Process Yield
tHq, yt = −1 0.67

tt̄H 0.03 + 0.05†

VH 0.01 + 0.01†

other H 0
†Increase due to yt = −1, included into signal



Non-resonant backgrounds

• Remaining backgrounds are smooth in mγγ

◦ γγ + jets, γ + jets, tγγ, tt̄γγ, . . .

• Their spectrum in data is fitted with
an exponential function
◦ Utilise sidebands

mγγ ∈ (100, 122) ∪ (128, 180) GeV
◦ Use four control regions with
• loosened (“CSVL”) or removed (“CSV0”)

requirement on b-tagging
• nominal or inverted photon ID

◦ Difference between two high-stat
control regions used as systematics
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Results

• Zero events observed in mγγ sidebands
◦ Translates to an estimate of contribution

of non-resonant backgrounds under the
peak

• Zero events found in the mass window
as well

• Observed 95% CLs upper limit on tHq is
4.1 times the expected cross section
◦ Absolute value: σyt=−1

tHq × Byt=−1
H→γγ < 5.2 fb

◦ Coincides with the expected limit
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Search in the H → bb̄ channel
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• Exactly one isolated µ or e
◦ pT > 26 (30) GeV for µ (e)
◦ Used to trigger events

• Moderate 6ET

◦ 6ET > 35 (45) for µ (e)

• Three or four b-quark jets
◦ pT > 20 GeV

• A non-b-quark recoil jet
◦ pT > 20 GeV if |η| < 2.4
◦ pT > 40 GeV if |η| > 2.4

• Dominant background is tt̄Region S/B ratio
3 b-jets 13/1900 0.7%
4 b-jets 1.4/66 2.1%
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Jet assignment with MVA

• The small S/B ratio makes a multivariate analysis essential

• But construction of input variables from a multijet final state is delicate
◦ E. g. which jets stem from H decay?

• Hypothesise origin of RECO jets
◦ Consider all possible ways to assign four jets

to the four quarks in the tHq → `ν3bq final state

◦ Each particular way represents an interpretation
of the event and can be described with a number
of observables

• Reconstructed mH , mt , ∆R between jets from
H → bb̄, b-tagging discriminator of the b from t → b`ν, etc.

◦ Train an MVA to distinguish correct and wrong
event interpretations

◦ In an unknown event, consider all possible interpretations, evaluate the MVA
for each one, and accept the interpretation with the largest MVA response

• A similar procedure is used for semileptonic tt̄
◦ This is by far the dominant background
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Discrimination between signal and backgrounds

Events passing the selection

tHq MVA reco tt̄ MVA reco

tHq
observables

tt̄
observables

global
observables

tHq vs bkg discrimination

Limit
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Discrimination between signal and backgrounds
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Signal selection efficiency
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• The jet assignment is only used to construct
input variables for the final MVA
◦ Trained to distinguish tH events from

backgrounds

• Examples of input variables
◦ Defined under tH hypothesis: pT(H), η(q′)
◦ Defined under tt̄ hypothesis: mass of t → had,

number of b-tagged jets amoung its decay
products

◦ Independent of jet assignment: Q(`)

• Response of the final MVA in data is fitted to
put an upper limit

• Observed a 95% CLs upper limit of 7.6 times
the expected cross section (exp. limit 5.1+2.1

−1.7)

◦ Absolute value: σyt=−1
tHq × BH→bb̄ < 1.0 pb



Summary

• Associated tH production allows to probe for negative yt
◦ A possibility still supported by experimental data if one considers BSM

contributions to Hgg and Hγγ loops

• Searches for tHq with yt = −1 have been performed in the H → γγ and
H → bb̄ decay channels
◦ Upper limits of 4.1 and 7.6× σyt=−1

tHq are observed for H → γγ and H → bb̄

• New results from 8 TeV data are coming, including a combination
of the searches
◦ Stay tuned

• Looking forward LHC Run II
◦ Fourfold increase in signal cross section is expected
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Additional slides
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Cross sections

• Cross section is challengingly small
◦ The main background is tt̄; its cross section is provided for comparison

Cross section 8 TeV 14 TeV

tHq, yt = +1 (SM) 18.3± 0.4 fb 88.2+1.7
−0.0 fb

tHq, yt = −1 233.8+4.6
−0.0 fb 980+30

−0 fb

tt̄ 245+9
−10 pb 950+40

−30 pb

tHq cross sections are cited according to M. Farina et al., JHEP 1305 (2013) 022

[arXiv:1211.3736]. Cross sections for tt̄ are calculated in M. Czakon, P. Fiedler, Phys. Rev. Lett.

110 (2013) 252004 [arXiv:1303.6254]. Uncertainties are combined following R. Barlow,

arXiv:physics/0306138
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Constraints on Higgs boson couplings from LHC
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http://cds.cern.ch/record/1728249
http://cds.cern.ch/record/1670012


Direct measurements of yt at LHC

• A number of searches for tt̄H production performed by CMS and ATLAS

• So far, no significant excess over the background prediction has been
observed, thus only upper limits on the cross section are set
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H → γγ: Input variables for the LD
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H → γγ: Systematic uncertainties

tHq tt̄H VH Continuous BG
Luminosity ±2.6% ±2.6% ±2.6% —
PDF +3.1/-2.5 % ±8% ±11% —
QCD scale +4.8/-4.3 % +11/-14 % ±2.3% —
Signal model ±5.5% — — —
Photon energy resolution +4/-2 % +4/-2 % +4/-2 % —
Photon energy scale +1/-4 % +1/-4 % +1/-4 % —
Photon ID efficiency ±2% ±2% ±2% —
Vertex efficiency ±0.1% ±0.1% ±0.1% —
Trigger < 0.1% < 0.1% < 0.1% —
JEC ±1.5% +3/-5 % ±8% —
JER ±0.5% ±3% +8/-0 % —
b-tagging ±2% ±1.5% ±0.1% —
PU ID ±2% ±0.5% ±2% —
Lepton reconstruction ±1% ±1% ±1% —
BG shape — — — 33%
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H → bb̄: Expected event yields

Process Muon channel Electron channel
tt̄ 1058±5 718±4
Single top 39±3 27±3
Electroweak 17+

−
7
5 11±7

tt̄H 12.87±0.17 9.35±0.15
Total background 1128±9 767±10
tHq, yt = −1 7.54±0.03 5.15±0.02
S/B ratio 0.7% 0.7%

Process Muon channel Electron channel
tt̄ 29.1±0.8 19.8±0.7
Single top 1.1+

−
0.8
0.6 1.2±1.0

Electroweak 4+
−

6
4 5+

−
6
4

tt̄H 1.72±0.06 1.43±0.05
Total background 37+

−
6
4 29+

−
7
4

tHq, yt = −1 0.835±0.010 0.580±0.009
S/B ratio 2.3% 2.0%
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H → bb̄: Input variables for tHq jet assignment
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H → bb̄: Input variables for tHq jet assignment
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H → bb̄: Input variables for tt̄ jet assignment
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H → bb̄: Input variables for tt̄ jet assignment
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H → bb̄: Input variables for tt̄ jet assignment
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H → bb̄: Efficiency of jet identification

• Three definitions of identification efficiency are considered:
◦ “A”: Calculated with all events that pass the selection
◦ “B”: Use only events in which the parton in question does have an

MC-truth match
◦ “C”: Use events that have a correct interpretation (as defined by the

procedure, see the AN)

• A perfect jet assignment would have a 100% efficiency in definition C
◦ At the same, time the efficiency in definition A incorporates effects of jet

acceptance (especially, pT cut) as well as jet splitting, merging, and other
artefacts and thus might be significantly lower

• Definitions A and C can also be used for groups of more than one jet
◦ A group is identified correcly if all jets in it are identified
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H → bb̄: Efficiency of jet identification, tHq hyp.

• Mean number of jets in a tHq event is 5.4

• Mean number of considered event interpretations is 60

• Efficiency of identification of jets and groups of jets:

Object(s)
Efficiency

A B C
b from t → b`ν 56.7% 61.3% 65.9%
at least one b from H → bb̄ 85.6% — 92.3%
both b from H → bb̄ 50.8% — 64.5%
recoil quark 51.8% 78.3% 78.5%
all four quarks 21.8% — 44.2%
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H → bb̄: Efficiency of jet identification, tt̄ hypothesis

• Mean number of jets in a semileptonic tt̄ event is 5.7

• Mean number of considered event interpretations is 35

• Efficiency of identification of jets and groups of jets:

Object(s)
Efficiency

A B C
b from t → b`ν 63.5% 69.5% 66.0%
b from t → had 58.3% 63.5% 68.3%
at least one q from W → qq̄′ 63.0% — 90.0%
both q from W → qq̄′ 10.9% — 56.6%
all quarks from t → had 8.6% — 47.1%
all four quarks 6.1% — 37.0%
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H → bb̄: Responses and ROCs for jet assignment
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H → bb̄: Jet assignment and perf. of class. MVA
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H → bb̄: Input variables for tHq vs bkgs classification
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H → bb̄: Input variables for tHq vs bkgs classification
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H → bb̄: Response and ROC of classification MVA
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H → bb̄: Systematics

Source Type
impact as exclusive

source on final limit [%]
improvement of final limit

after removal [%]
JES shape 17 3
JER shape < 1 < 1
BTag light flavor shape 13 < 1
BTag heavy flavor shape 17 < 1
Pile up normalization < 1 < 1
Unclustered energy shape 3 1
Lepton efficiency normalization 5 < 1
Luminosity normalization 10 < 1
Cross section (PDF) normalization 8 < 1
Cross section (Scale) normalization 9 < 1
MC Bin-by-Bin unc. shape < 1 < 1
Q2 scale (tHq + tt̄) shape 20 4
Matching shape 2 2
Top pT reweighting shape 19 2
tt̄ HF rates (b) normalization 13 < 1
tt̄ HF rates (bb̄) normalization 15 < 1
tt̄ HF rates (c / cc̄) normalization 13 1
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H → bb̄: Post-fit distributions in MVA response
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