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Associated tH production

e Two dominant diagrams for tHq production in SM:

o Destructive interference in SM = cross section 18.3 fbf
o With an inverted sign of Yukawa coupling y: = —1 the interference is
constructive, o = 234 bt (%13 enhancement)

"Farina et al., JHEP 05 (2013) 022
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http://arxiv.org/abs/1211.3736

Negative top-quark Yukawa coupling

e Couplings measurements by ATLAS and CMS
favour y; =~ +1
o Sensitivity to the sign comes from H — ~~ only
o Results assume that no new physics affect
Hgg and H~~ loop-induced couplings
e |f BSM contributions to Hgg and H~~ are
considered, y; ~ —1 is well allowed
o Bottom fig.: Combined constraints from ATLAS,
CMS, and Tevatron marginalised over possible
BSM contributions in the loops
e Study of tHq production allows to solve
the twofold ambiguity
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http://cds.cern.ch/record/1728249
http://arxiv.org/abs/1303.3879

Searches for tHq production with negative y;

e CMS performed searches for tHq production with negative y;
o H — 4y and H — bb decay channels
o Focused on the y; = —1 case as couplings affect kinematics
o Whole 8 TeV dataset utilised (~ 20fb *)

e H — ~v channel (CMS PAS HIG-14-001)
o Small branching ratio but high purity
o An additional enhancement of B(H — ~~) by a factor of 2.4
o Cut-and-count analysis

o H — bb channel (CMS PAS HIG-14-015)

o Largest branching ratio but overwhelming tt background
o Complex MVA-based analysis
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http://cds.cern.ch/record/1669861
http://cds.cern.ch/record/1952829

Search in the H — ~~ channel
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Event preselection
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Event preselection

e Two photons

o pr(m) > 50 m,,/120
o pT(’}/z) > 25 GeV
Eff. on signal events is 98%

e Exactly one isolated p or e
o pr > 10GeV

e A b-quark jet
o pr > 20GeV

e A forward recoil jet
o pr >20GeV, |n| >1

e Consider mass window 122 < m.,y < 128 GeV as the signal region
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Resonant backgrounds

e Backgrounds with a Higgs boson contribute to the m., peak
o ttH (dominant), VH, H + jets

e To suppress ttH, a likelihood product discriminator (LD) is constructed
o Variables: # jets, mr(t), n(q’), An(¢,q’), lepton charge

e A cut on value of LD is added to event selection 4, cussmusen

e Expected yields in the m,., window after the
full selection:

Normalized to Unity

Process Yield
tHq, y: = —1 0.67
ttH 0.03 + 0.05
VH 0.01 + 0.01f
other H 0
lncrease due to y; = —1, included into signal
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Non-resonant backgrounds

e Remaining backgrounds are smooth in m.,

O v+ jets, v+ jets, tyy, ttyy, ...

e Their spectrum in data is fitted with
an exponential function
o Utilise sidebands
m~~ € (100,122) U (128, 180) GeV
o Use four control regions with
e loosened (“CSVL") or removed (“CSV0")
requirement on b-tagging
e nominal or inverted photon ID
o Difference between two high-stat
control regions used as systematics
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Results

e Zero events observed in m., sidebands

H H H CMS Prelimil ,L=19.7fb *at Vs=8TeV
o Translates to an estimate of contribution rejmnan. at fs=8Te
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Results

e Zero events observed in m., sidebands

. . . imil = -1 =
o Translates to an estimate of contribution o R fs8Tev
of non-resonant backgrounds under the & .| * Data
o oL =
peak = I [ JtHa(ct=-1)
. . g 04; ExtranH (Ct=-1)
e Zero events found in the mass window g f [ i 129)
w L
as well 03l B v a29)

e Observed 95% CLs upper limit on tHgq is
4.1 times the expected cross section

o Absolute value: o2f "' x BIiS 1 <5.2fb o

o Coincides with the expected limit
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Search in the H — bb channel
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Event selection
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Event selection

Exactly one isolated p or e

o pr > 26 (30) GeV for p (e)
o Used to trigger events

Moderate Zt

o Fr > 35 (45) for pu (e)
Three or four b-quark jets
o pr > 20GeV

A non-b-quark recoil jet

o pr>20GeVif n| <2.4
o pr >40GeV if |n| > 2.4

Dominant background is tt

Region S/B ratio
3 b-jets  13/1900 0.7%
4 b-jets 1.4/66 2.1%
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Jet assignment with MVA

e The small S/B ratio makes a multivariate analysis essential
e But construction of input variables from a multijet final state is delicate

o E.g. which jets stem from H decay? b,? /

by?

ISR/FSR?
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Jet assignment with MVA

e The small S/B ratio makes a multivariate analysis essential
e But construction of input variables from a multijet final state is delicate

o E.g. which jets stem from H decay? bs? ¢

e Hypothesise origin of RECO jets .

o Consider all possible ways to assign four jets '
to the four quarks in the tHqg — fv3bgq final state

o Each particular way represents an interpretation
of the event and can be described with a number
of observables

o Train an MVA to distinguish correct and wrong
event interpretations

o In an unknown event, consider all possible interpretations, evaluate the MVA
for each one, and accept the interpretation with the largest MVVA response

qe?
ISR/FSR?

be?

o A similar procedure is used for semileptonic tt
o This is by far the dominant background
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Discrimination between signal and backgrounds

Events passing the selection
\ l
tHq MVA reco tt MVA reco
l !
tHq tt global
observables observables observables

NG | —

tHq vs bkg discrimination
l
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Discrimination between signal and backgrounds

CMS simulation Preliminary 8 TeV

=

The jet assignment is only used to construct
input variables for the final MVA

o Trained to distinguish tH events from

°

°

Background rejection efficiency

backgrounds
o Examples of input variables ' \
o Defined under tH hypothesis: pr(H), n(q’) "
© Defined under t hypothesis: mass of t — had, 85— or _se oo
number of b-tagged jets amoung its decay 0 ETeV)
pI’OdUCtS % L Muon channel ‘ cMs 7:
o Independent of jet assignment: Q(¢) B 00| o6 cev Preimnan_|B,
o Response of the final MVA in data is fitted to '

put an upper limit

Observed a 95% CL, upper limit of 7.6 times

the expected cross section (exp. limit 5.1771)

o Absolute value: a{,ﬁ,j_l X By_p5 < 1.0pb

1
MVA output
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Summary

e Associated tH production allows to probe for negative y;

o A possibility still supported by experimental data if one considers BSM
contributions to Hgg and H~~ loops

e Searches for tHq with y;
H — bb decay channels

o Upper limits of 4.1 and 7.6 x O’{;;71 are observed for H — vy and H — bb

—1 have been performed in the H — vy and

e New results from 8 TeV data are coming, including a combination
of the searches

o Stay tuned
e Looking forward LHC Run Il
o Fourfold increase in signal cross section is expected
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Additional slides
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Cross sections

e Cross section is challengingly small
o The main background is t; its cross section is provided for comparison

Cross section 8 TeV 14 TeV
tHq, ye = +1 (SM) | 18.3+0.4fb 88.2717 b
tHe. ye =1 233.8%55fb 9807 b
i 245%9pb 950743 pb

tHq cross sections are cited according to M. Farina et al., JHEP 1305 (2013) 022
[arXiv:1211.3736]. Cross sections for tt are calculated in M. Czakon, P. Fiedler, Phys. Rev. Lett.
110 (2013) 252004 [arXiv:1303.6254]. Uncertainties are combined following R. Barlow,
arXiv:physics/0306138
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http://arxiv.org/abs/1211.3736
http://arxiv.org/abs/1303.6254
http://arxiv.org/abs/physics/0306138

Constraints on Higgs boson couplings from LHC
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http://cds.cern.ch/record/1728249
http://cds.cern.ch/record/1670012

Direct measurements of y; at LHC

o A number of searches for ttH production performed by CMS and ATLAS

e So far, no significant excess over the background prediction has been
observed, thus only upper limits on the cross section are set

CMS Preliminary (s=7TeV,L=501b% (s=8TeV,L=19.5f"

CMS Preliminary Vs=8TeV,L=19.5fb"

F=8 Expected + 10

wl o
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bb — -m- Observed

Hadronic Tt
a4 15
3l
Same-Sign 2|
05
Combination
0 0 1 2 3 4 5 6
95% CL limit on o/ag,, at m, = 125.7 GeV Ky
CMS ttH combination based on HIG-12-025, HIG-13-015, HIG-13-019, HIG-13-020
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/ttHCombinationTWiki
http://cds.cern.ch/record/1460423
http://cds.cern.ch/record/1547292
http://cds.cern.ch/record/1564682
http://cds.cern.ch/record/1604480

H — ~7: Input variables for the LD
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H — ~7: Systematic uncertainties

tHq ttH VH Continuous BG
Luminosity +2.6% +2.6% +2.6% —
PDF 13.1/25%  +8% +11% —
QCD scale +4.8/-43% +11/-14%  £2.3% —
Signal model +5.5% — — —
Photon energy resolution +4/-2 % +4/-2%  +4/-2% —
Photon energy scale +1/-4 % +1/-4% +1/-4% —
Photon ID efficiency +2% +2% +2% —
Vertex efficiency +0.1% +0.1% +0.1% —
Trigger < 0.1% <0.1% <0.1% —
JEC +£1.5% +3/5%  +8% —
JER +0.5% £3%  +8/-0 % —
b-tagging +2% +1.5% +0.1% —
PU ID +2% +0.5% +2% —
Lepton reconstruction +1% +1% +1% —
BG shape — — — 33%
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H — bb: Expected event yields

Process Muon channel  Electron channel
c tt 105845 718+4
o Single top 393 27+3
E)O Electroweak 17+1 1147
- ttH 12.87+0.17 9.354+0.15
&  Total background 1128+9 767+10
tHq, y; = -1 7.5440.03 5.1540.02
S/B ratio 0.7% 0.7%
Process Muon channel  Electron channel
tt 29.1+0.8 19.8+0.7
Single top 11738 1.2+1.0
H Electroweak 418 58
‘a0 ttH 1.72+0.06 1.43+0.05
@ Total background 377§ 2077
ér-l tHq, yr = —1 0.835+0.010 0.580-£0.009
S/ B ratio 2.3% 2.0%
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H — bb: Input variables for tHq jet assignment
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H — bb: Input variables for tHq jet assignment
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H — bb: Input variables for tf jet assignment
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H — bb: Input variables for tf jet assignment
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H — bb: Input variables for tf jet assignment
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H — bb: Efficiency of jet identification

e Three definitions of identification efficiency are considered:
o “A": Calculated with all events that pass the selection
o “B": Use only events in which the parton in question does have an
MC-truth match
o “C": Use events that have a correct interpretation (as defined by the
procedure, see the AN)
o A perfect jet assignment would have a 100% efficiency in definition C

o At the same, time the efficiency in definition A incorporates effects of jet
acceptance (especially, pr cut) as well as jet splitting, merging, and other
artefacts and thus might be significantly lower

e Definitions A and C can also be used for groups of more than one jet
o A group is identified correcly if all jets in it are identified
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H — bb: Efficiency of jet identification, tHg hyp.

e Mean number of jets in a tHq event is 5.4
e Mean number of considered event interpretations is 60

e Efficiency of identification of jets and groups of jets:

. Efficiency
Object(s) A B C
b from t — blv 56.7% 61.3% 65.9%
at least one b from H — bb | 85.6% — 92.3%
both b from H — bb 50.8% —  64.5%
recoil quark 51.8% 78.3% 78.5%
all four quarks 21.8% — 44.2%
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H — bb: Efficiency of jet identification, tf hypothesis

e Mean number of jets in a semileptonic tt event is 5.7
e Mean number of considered event interpretations is 35

o Efficiency of identification of jets and groups of jets:

Object(s) A Eff|c||3ency c
b from t — blv 63.5% 69.5% 66.0%
b from t — had 58.3% 63.5% 68.3%
at least one g from W — qg@’ | 63.0% — 90.0%
both g from W — qg’ 10.9% —  56.6%
all quarks from t — had 8.6% — 47.1%
all four quarks 6.1% — 37.0%
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H — bb: Responses and ROCs for jet assignment
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H — bb: Jet assignment and perf. of class. MVA

32/15
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H — bb: Input variables for tHq vs bkgs classification
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H — bb: Input variables for tHq vs bkgs classification
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H — bb: Response and ROC of classification MVA

CMS Simulation Preliminary 8 TeV CMS simulation Preliminary 8 TeV
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H — bb: Systematics

impact as exclusive improvement of final limit

Source Type source on final limit [%)] after removal [%)]
JES shape 17 3
JER shape <1 <1
BTag light flavor shape 13 <1
BTag heavy flavor shape 17 <1
Pile up normalization <1 <1
Unclustered energy shape 3 1
Lepton efficiency normalization 5 <1
Luminosity normalization 10 <1
Cross section (PDF)  normalization 8 <1
Cross section (Scale) normalization 9 <1
MC Bin-by-Bin unc.  shape <1 <1
Q? scale (tHg + tt) shape 20 4
Matching shape 2 2
Top pr reweighting  shape 19 2
tt HF rates (b) normalization 13 <1
tt HF rates (bb) normalization 15 <1
tt HF rates (c / ¢c€) normalization 13 1
36 /15



H — bb: Post-fit distributions in MVA response
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