Searches for associated *tH* production with the CMS experiment

Andrey Popov^{1,2} On behalf of the CMS collaboration

¹CP3 UCL, Louvain-la-Neuve, BE

²also at SINP MSU, Moscow, RU

II CMS single-top workshop, Naples, Italy, 4–5 Dec 2014

Associated tH production

• Two dominant diagrams for *tHq* production in SM:

- Destructive interference in SM \Rightarrow cross section 18.3 fb[†]
- With an inverted sign of Yukawa coupling $y_t = -1$ the interference is constructive, $\sigma = 234 \, \text{fb}^{\dagger} \, (\times 13 \text{ enhancement})$

[†]Farina et al., JHEP **05** (2013) 022

Negative top-quark Yukawa coupling

- Couplings measurements by ATLAS and CMS favour $y_t \approx +1$
 - $\circ~$ Sensitivity to the sign comes from $H\to\gamma\gamma$ only
 - $\circ\,$ Results assume that no new physics affect Hgg and $H\gamma\gamma$ loop-induced couplings
- If BSM contributions to Hgg and H $\gamma\gamma$ are considered, $y_t \approx -1$ is well allowed
 - Bottom fig.: Combined constraints from ATLAS, CMS, and Tevatron marginalised over possible BSM contributions in the loops
- Study of *tHq* production allows to solve the twofold ambiguity

Searches for tHq production with negative y_t

- CMS performed searches for tHq production with negative y_t
 - $\circ~~H
 ightarrow \gamma \gamma$ and $H
 ightarrow b ar{b}$ decay channels
 - Focused on the $y_t = -1$ case as couplings affect kinematics
 - \circ Whole 8 TeV dataset utilised (\sim 20 fb $^{-1}$)
- $H
 ightarrow \gamma \gamma$ channel (CMS PAS HIG-14-001)
 - Small branching ratio but high purity
 - $\circ~$ An additional enhancement of ${\cal B}(H\to\gamma\gamma)$ by a factor of 2.4
 - Cut-and-count analysis
- $H
 ightarrow b ar{b}$ channel (CMS PAS HIG-14-015)
 - \circ Largest branching ratio but overwhelming $t\bar{t}$ background
 - Complex MVA-based analysis

Search in the $H\to\gamma\gamma$ channel

- Two photons
- $\circ p_T(\gamma_1) > 50 \cdot m_{\gamma\gamma}/120$
- $\circ p_T(\gamma_2) > 25 \,\mathrm{GeV}$
- $\circ~$ Eff. on signal events is 98%

- Two photons
 - $\circ p_T(\gamma_1) > 50 \cdot m_{\gamma\gamma}/120$
 - $\circ p_T(\gamma_2) > 25 \, \text{GeV}$
 - $\circ\,$ Eff. on signal events is 98%
- Exactly one isolated μ or e
 - $\circ p_T > 10 \, \text{GeV}$

- Two photons
 - $\circ p_T(\gamma_1) > 50 \cdot m_{\gamma\gamma}/120$
 - $\circ p_T(\gamma_2) > 25 \, \text{GeV}$
 - $\circ\,$ Eff. on signal events is 98%
- Exactly one isolated µ or e
 - $\circ p_T > 10 \, \text{GeV}$
- A *b*-quark jet
 - $\circ p_T > 20 \, \text{GeV}$

- Two photons
 - $\circ p_T(\gamma_1) > 50 \cdot m_{\gamma\gamma}/120$
 - $\circ p_T(\gamma_2) > 25 \, \text{GeV}$
 - $\circ\,$ Eff. on signal events is 98%
- Exactly one isolated µ or e
 - $\circ p_T > 10 \, \text{GeV}$
- A *b*-quark jet
 - $\circ p_T > 20 \, \text{GeV}$
- A forward recoil jet
 - $\circ~ p_T > 20 \, ext{GeV}, ~ |\eta| > 1$

- Two photons
 - $\circ p_T(\gamma_1) > 50 \cdot m_{\gamma\gamma}/120$
 - $\circ p_T(\gamma_2) > 25 \, \text{GeV}$
 - $\circ\,$ Eff. on signal events is 98%
- Exactly one isolated µ or e
 - $\circ p_T > 10 \, \text{GeV}$
- A *b*-quark jet
 - $\circ p_T > 20 \,\mathrm{GeV}$
- A forward recoil jet
 - \circ $p_T > 20 \, {
 m GeV}, \ |\eta| > 1$
- Consider mass window $122 < m_{\gamma\gamma} < 128\,{
 m GeV}$ as the signal region

Resonant backgrounds

- Backgrounds with a Higgs boson contribute to the m_{γγ} peak
 tt
 t H (dominant), VH, H + jets
- To suppress $t\bar{t}H$, a likelihood product discriminator (LD) is constructed
 - \circ Variables: # jets, $m_{T}(t)$, $\eta(q')$, $\Delta\eta(\ell,q')$, lepton charge
- A cut on value of LD is added to event selection
- Expected yields in the $m_{\gamma\gamma}$ window after the full selection:

Process	Yield
$tHq, y_t = -1$	0.67
tŦH	$0.03 + 0.05^{\dagger}$
VH	$0.01+0.01^\dagger$
other H	0

[†]Increase due to $y_t = -1$, included into signal

Non-resonant backgrounds

• Remaining backgrounds are smooth in $m_{\gamma\gamma}$

 $\circ \gamma\gamma + jets, \gamma + jets, t\gamma\gamma, t\bar{t}\gamma\gamma, \dots$

- Their spectrum in data is fitted with an exponential function
 - Utilise sidebands $m_{\gamma\gamma} \in (100, 122) \cup (128, 180) \, {
 m GeV}$
 - · Use four control regions with
 - loosened ("CSVL") or removed ("CSV0") requirement on *b*-tagging
 - nominal or inverted photon ID
 - Difference between two high-stat control regions used as systematics

Results

- Zero events observed in $m_{\gamma\gamma}$ sidebands
 - Translates to an estimate of contribution of non-resonant backgrounds under the peak

Results

- Zero events observed in $m_{\gamma\gamma}$ sidebands
 - Translates to an estimate of contribution of non-resonant backgrounds under the peak
- Zero events found in the mass window as well
- Observed 95% *CL_s* upper limit on *tHq* is 4.1 times the expected cross section
 - Absolute value: $\sigma_{tHq}^{y_t=-1} imes \mathcal{B}_{H o \gamma \gamma}^{y_t=-1} < 5.2 \, \mathrm{fb}$
 - Coincides with the expected limit

Search in the $H ightarrow b ar{b}$ channel

- Exactly one isolated μ or e
 - $\circ~$ p_T > 26 (30) GeV for μ (e)
 - $\circ~$ Used to trigger events

- Exactly one isolated μ or e
 - $\circ~$ p_T > 26 (30) GeV for μ (e)
 - $\circ~$ Used to trigger events
- Moderate *岸*⊤

- Exactly one isolated μ or e
 - $\circ~$ p_T > 26 (30) GeV for μ (e)
 - $\circ~$ Used to trigger events
- Moderate *Ę*_T
- Three or four *b*-quark jets
 - $\circ p_T > 20 \, \text{GeV}$

- Exactly one isolated μ or e
 - $\circ~
 m {\it p_T}>26~(30)\,GeV$ for $\mu~(e)$
 - $\circ~$ Used to trigger events
- Moderate ∉_T
- Three or four *b*-quark jets
 - $\circ p_T > 20 \, \text{GeV}$
- A non-*b*-quark recoil jet
 - $\circ \ p_T > 20 \, ext{GeV}$ if $|\eta| < 2.4$
 - $\circ~
 ho_T>$ 40 GeV if $|\eta|>$ 2.4

Region	S/B ra	atio
3 <i>b</i> -jets	13/1900	0.7%
4 <i>b</i> -jets	1.4/66	2.1%

- Exactly one isolated μ or e
 - $\circ~$ p_T > 26 (30) GeV for μ (e)
 - $\circ~$ Used to trigger events
- Moderate ∉_T
- Three or four *b*-quark jets
 *p*_T > 20 GeV
- A non-*b*-quark recoil jet
 - $\circ~
 ho_T>$ 20 GeV if $|\eta|<$ 2.4
 - $\circ~~ p_T >$ 40 GeV if $|\eta| >$ 2.4
- Dominant background is $t\bar{t}$

- The small S/B ratio makes a multivariate analysis essential
- But construction of input variables from a multijet final state is delicate
 - \circ E.g. which jets stem from *H* decay?

- The small S/B ratio makes a multivariate analysis essential
- But construction of input variables from a multijet final state is delicate
 E.g. which jets stem from H decay?

 $b_H?$

- Hypothesise origin of RECO jets
 - Consider all possible ways to assign four jets to the four quarks in the $tHq \rightarrow \ell \nu 3bq$ final state

- The small S/B ratio makes a multivariate analysis essential
- But construction of input variables from a multijet final state is delicate

bн?

- E.g. which jets stem from *H* decay?
- Hypothesise origin of RECO jets
 - Consider all possible ways to assign four jets to the four quarks in the $tHq \rightarrow \ell \nu 3bq$ final state
 - Each particular way represents an interpretation of the event and can be described with a number of observables
 - Reconstructed m_H , m_t , ΔR between jets from q'? $H \rightarrow b\bar{b}$, b-tagging discriminator of the b from $t \rightarrow b\ell\nu$, etc.

- The small S/B ratio makes a multivariate analysis essential
- But construction of input variables from a multijet final state is delicate

bн?

- E.g. which jets stem from *H* decay?
- Hypothesise origin of RECO jets
 - Consider all possible ways to assign four jets to the four quarks in the $tHq \rightarrow \ell\nu 3bq$ final state
 - Each particular way represents an interpretation of the event and can be described with a number of observables
 - Train an MVA to distinguish correct and wrong event interpretations

- The small S/B ratio makes a multivariate analysis essential
- But construction of input variables from a multijet final state is delicate

bн?

- E.g. which jets stem from H decay?
- Hypothesise origin of RECO jets
 - Consider all possible ways to assign four jets to the four quarks in the $tHq \rightarrow \ell \nu 3bq$ final state
 - Each particular way represents an interpretation of the event and can be described with a number of observables
 - Train an MVA to distinguish correct and wrong event interpretations
 - In an unknown event, consider all possible interpretations, evaluate the MVA for each one, and accept the interpretation with the largest MVA response

- The small S/B ratio makes a multivariate analysis essential
- But construction of input variables from a multijet final state is delicate

 $\bar{q}_{+}^{\prime}?$

- E.g. which jets stem from *H* decay?
- Hypothesise origin of RECO jets
 - Consider all possible ways to assign four jets to the four quarks in the $tHq \rightarrow \ell \nu 3bq$ final state
 - Each particular way represents an interpretation of the event and can be described with a number of observables
 Train an MMA to distribute the second s
 - Train an MVA to distinguish correct and wrong event interpretations
 - In an unknown event, consider all possible interpretations, evaluate the MVA for each one, and accept the interpretation with the largest MVA response
- A similar procedure is used for semileptonic $t\bar{t}$
 - This is by far the dominant background

Discrimination between signal and backgrounds

Discrimination between signal and backgrounds

- The jet assignment is only used to construct input variables for the final MVA
 - Trained to distinguish tH events from backgrounds
- Examples of input variables
 - Defined under tH hypothesis: $p_T(H)$, $\eta(q')$
 - Defined under $t\bar{t}$ hypothesis: mass of $t \rightarrow$ had, number of *b*-tagged jets amoung its decay products
 - $\circ~$ Independent of jet assignment: ${\it Q}(\ell)$
- Response of the final MVA in data is fitted to put an upper limit
- Observed a 95% CL_s upper limit of 7.6 times the expected cross section (exp. limit 5.1^{+2.1}_{-1.7})
 - \circ Absolute value: $\sigma_{tHq}^{y_t=-1} imes \mathcal{B}_{H o bar{b}} < 1.0 \, \mathrm{pb}$

Summary

- Associated tH production allows to probe for negative y_t
 - $\circ\,$ A possibility still supported by experimental data if one considers BSM contributions to Hgg and $H\gamma\gamma$ loops
- Searches for tHq with $y_t = -1$ have been performed in the $H \to \gamma\gamma$ and $H \to b\bar{b}$ decay channels
 - $\circ~$ Upper limits of 4.1 and 7.6 $\times \sigma_{tHa}^{_{yt}=-1}$ are observed for $H\to\gamma\gamma$ and $H\to b\bar{b}$
- New results from 8 TeV data are coming, including a combination of the searches
 - Stay tuned
- Looking forward LHC Run II
 - Fourfold increase in signal cross section is expected

Additional slides

Cross sections

- Cross section is challengingly small
 - The main background is $t\bar{t}$; its cross section is provided for comparison

Cross section	8 TeV	14 TeV
$tHq, y_t = +1 \text{ (SM)}$	$18.3\pm0.4\text{fb}$	$88.2^{+1.7}_{-0.0}{\rm fb}$
tHq , $y_t = -1$	$233.8^{+4.6}_{-0.0}{ m fb}$	$980^{+30}_{-0}{ m fb}$
tī	$245^{+9}_{-10}{ m pb}$	$950^{+40}_{-30}{ m pb}$

tHq cross sections are cited according to M. Farina et al., JHEP 1305 (2013) 022 [arXiv:1211.3736]. Cross sections for $t\bar{t}$ are calculated in M. Czakon, P. Fiedler, Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254]. Uncertainties are combined following R. Barlow, arXiv:physics/0306138

Constraints on Higgs boson couplings from LHC

Direct measurements of y_t at LHC

- A number of searches for $t\bar{t}H$ production performed by CMS and ATLAS
- So far, no significant excess over the background prediction has been observed, thus only upper limits on the cross section are set

CMS tTH combination based on HIG-12-025, HIG-13-015, HIG-13-019, HIG-13-020

$H \rightarrow \gamma \gamma$: Input variables for the LD

$H\to\gamma\gamma$: Systematic uncertainties

	tHq	tŦH	VH	Continuous BG
Luminosity	±2.6%	±2.6%	$\pm 2.6\%$	_
PDF	+3.1/-2.5 %	$\pm 8\%$	$\pm 11\%$	_
QCD scale	+4.8/-4.3 %	+11/-14 %	$\pm 2.3\%$	_
Signal model	$\pm 5.5\%$	_	—	_
Photon energy resolution	+4/-2 %	+4/-2 %	+4/-2 %	—
Photon energy scale	+1/-4 %	+1/-4 %	+1/-4 %	_
Photon ID efficiency	$\pm 2\%$	±2%	$\pm 2\%$	—
Vertex efficiency	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	—
Trigger	< 0.1%	< 0.1%	< 0.1%	
JEC	$\pm 1.5\%$	+3/-5 %	$\pm 8\%$	—
JER	$\pm 0.5\%$	$\pm 3\%$	+8/-0 %	—
<i>b</i> -tagging	$\pm 2\%$	$\pm 1.5\%$	$\pm 0.1\%$	
PU ID	$\pm 2\%$	$\pm 0.5\%$	$\pm 2\%$	—
Lepton reconstruction	$\pm 1\%$	$\pm 1\%$	$\pm 1\%$	
BG shape	—	_	_	33%

$H ightarrow b ar{b}$: Expected event yields

	Process	Muon channel	Electron channel
_	tī	1058 ± 5	718±4
5	Single top	39±3	27±3
<u>,0</u>	Electroweak	17^{+7}_{-5}	11 ± 7
2	tŦH	12.87 ± 0.17	$9.35{\pm}0.15$
ก	Total background	1128 ± 9	767±10
	$tHq, y_t = -1$	7.54±0.03	$5.15 {\pm} 0.02$
	S/B ratio	0.7%	0.7%

Process	Muon channel	Electron channel
tī	29.1±0.8	19.8±0.7
Single top	$1.1^{+0.8}_{-0.6}$	$1.2{\pm}1.0$
Electroweak	4^{+6}_{-4}	5^{+6}_{-4}
tŦH	$1.72{\pm}0.06$	$1.43{\pm}0.05$
Total background	37^{+6}_{-4}	29 ⁺⁷ ₋₄
$tHq, y_t = -1$	$0.835{\pm}0.010$	$0.580{\pm}0.009$
S/B ratio	2.3%	2.0%

4t region

.

$H \rightarrow b\bar{b}$: Input variables for tHq jet assignment

23 / 15

$H \rightarrow b\bar{b}$: Input variables for tHq jet assignment

$H \rightarrow b\bar{b}$: Input variables for $t\bar{t}$ jet assignment

$H \rightarrow b\bar{b}$: Input variables for $t\bar{t}$ jet assignment

$H \rightarrow b\bar{b}$: Input variables for $t\bar{t}$ jet assignment

$H \rightarrow b\bar{b}$: Efficiency of jet identification

- Three definitions of identification efficiency are considered:
 - $\circ~$ "A": Calculated with all events that pass the selection
 - $\circ~$ "B": Use only events in which the parton in question does have an MC-truth match
 - $\circ~$ "C": Use events that have a correct interpretation (as defined by the procedure, see the AN)
- A perfect jet assignment would have a 100% efficiency in definition C
 - At the same, time the efficiency in definition A incorporates effects of jet acceptance (especially, $p_{\rm T}$ cut) as well as jet splitting, merging, and other artefacts and thus might be significantly lower
- Definitions A and C can also be used for groups of more than one jet
 - A group is identified correcly if all jets in it are identified

$H \rightarrow b\bar{b}$: Efficiency of jet identification, tHq hyp.

- Mean number of jets in a tHq event is 5.4
- Mean number of considered event interpretations is 60
- Efficiency of identification of jets and groups of jets:

Object(c)	Efficiency		
Object(s)	A	В	С
b from $t o b \ell \nu$	56.7%	61.3%	65.9%
at least one b from $H o b ar{b}$	85.6%	—	92.3%
both b from $H o b ar{b}$	50.8%		64.5%
recoil quark	51.8%	78.3%	78.5%
all four quarks	21.8%		44.2%

$H \rightarrow b\bar{b}$: Efficiency of jet identification, $t\bar{t}$ hypothesis

- Mean number of jets in a semileptonic $t\bar{t}$ event is 5.7
- Mean number of considered event interpretations is 35
- Efficiency of identification of jets and groups of jets:

Object(c)	Efficiency		
Object(s)	Α	В	С
b from $t o b \ell \nu$	63.5%	69.5%	66.0%
b from $t ightarrow$ had	58.3%	63.5%	68.3%
at least one q from $W o q ar q'$	63.0%	—	90.0%
both q from $W o q ar q'$	10.9%	—	56.6%
all quarks from $t ightarrow$ had	8.6%	—	47.1%
all four quarks	6.1%		37.0%

$H \rightarrow b\bar{b}$: Responses and ROCs for jet assignment

Sum of μ and e channels

$H \rightarrow b\bar{b}$: Jet assignment and perf. of class. MVA

ROC for thq vs tt with different reconstruction

32 / 15

$H \rightarrow b\bar{b}$: Input variables for tHq vs bkgs classification

33 / 15

$H \rightarrow b\bar{b}$: Input variables for tHq vs bkgs classification

Sum of μ and e channels

$H \rightarrow b\bar{b}$: Response and ROC of classification MVA

$H \rightarrow b\bar{b}$: Systematics

		impact as exclusive	improvement of final limit
Source	Туре	source on final limit [%]	after removal [%]
IFS	shane	17	3
IFR	shape		
BTag light flavor	shape	13	< 1
	shape	13	< 1
B lag neavy flavor	snape	17	< 1
Pile up	normalization	< 1	< 1
Unclustered energy	shape	3	1
Lepton efficiency	normalization	5	< 1
Luminosity	normalization	10	< 1
Cross section (PDF)	normalization	8	< 1
Cross section (Scale)	normalization	9	< 1
MC Bin-by-Bin unc.	shape	< 1	< 1
Q^2 scale $(tHq + t\bar{t})$	shape	20	4
Matching	shape	2	2
Top p_T reweighting	shape	19	2
tī HF rates (b)	normalization	13	< 1
tt̄ HF rates (bb̄)	normalization	15	< 1
$t\bar{t}$ HF rates $(c \ / \ c\bar{c})$	normalization	13	1

$H \rightarrow b\bar{b}$: Post-fit distributions in MVA response

37 / 15