

1

New physics in single-top signatures: experimental summary

Stephanie Beauceron

One Top in the final state: W' → tb Monotop Stop

"Single production" mode with top Single B' VLQ Single T' VLQ

Conclusion

Over the talk: Atlas results, CMS results

One Top quark

W' searched in direct lepton + neutrino decay → No access to right-handed sector (only hadronic decay) Most of the models have stronger coupling to third generation of quarks.

Similar production to single top

src:Z.Sullivan, Phys.Rev.D 66 075011

(JE)

W' -> tb Semi Leptonic CERN-PH-EP-2014-232 CERN-PH-EP-2014-11

Atlas and CMS: Ivbb (I=e,µ), Iuminosity: 20.3fb⁻¹, 19.5 fb⁻¹ Selection: Single lepton trigger Isolated lepton with p_T>30 GeV , 50 GeV Missing E_T >35 GeV , >20 GeV Jets with p_T>25 GeV, (sub-)leading p_T>120 (40) GeV B-tagging: 2 b-tag jets using neural-network b-tagging (ϵ =70%), 1 or 2 b-tag with CSVM (ϵ = 70%)

Reconstruction/Analysis:

ipnl

Both: Full reconstruction of the final state (neutrino solved via Wmass constraint) [CMS 83% correct neutrino assignment for W'] Atlas: MT(W) +Met>60 GeV, studies performed in 2 or 3 jets bin; BDT used with 11 input variables changing in case of the jet bin as well as left-handed/right-handed case, no cut on BDT. CMS: cut based: $p_T(top) > 85$ GeV, $p_T(vect(jet1+jet2))>140$ GeV, 130<M(top)<210 GeV. Work in one or two b-tag categories. Except the 2b-tag, looser selection in Atlas case.

<u>W'→tb</u>→lvbb - Limits

CMS limit plots only for WR

Stronger limit from CMS mainly coming the fact that CMS has higher expected signal events.

W'→tb Full hadronic

ipnl

W'→tb Full hadronic

CERN-PH-EP-2014-152

ipnl

Lower limits than in I+jets final state

m_{w"} [GeV]

CERN-PH-EP-2014-231 CERN-PH-EP-2014-225

- Production of particle decaying in top quark and either a neutral boson (non resonant) which do not interact or a neutral fermion (resonant).
- Assumption: both neutral particle have BR~1 to decay in hidden sector or to have decay length is long enough to not be detected inside detector
- \rightarrow Search for single Top quark + large missing Et

Lagrangian:

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + a_{\rm FC}^0 \phi \bar{u} u + a_{\rm FC}^1 v_\mu \bar{u} \gamma^\mu u + \text{h.c.},$

 $a_{\rm FC}^{0,1}$ two 3 × 3 matrices in flavor space

CMS used a^{0,1}_{FC} =0.1 (for non 0-terms), Atlas: 0.2 (0.5, 1.0)

Selection: Trigger: Missing E_{τ} >150 GeV 3 jets p_T > 40 GeV, 2 jets p_T > 60 GeV, CERN-PH-EP-2014-225 veto events if additional jet $p_T > 35$ GeV M(jjj) < 250 GeV **1 b-tag jet (ε=70%)** Veto on isolated e/mu>20/10 GeV Missing $E_{T} > 350 \text{ GeV}$

Difficulty:

Using 3 control samples to derived multijet, $Z(\rightarrow vv)$ + jets and $W(\rightarrow lv)$ +jets [lepton outside of detector acceptance] from data.

ipni Monotop - Results - CMS

ion Monotop – Analysis - Atlas

Atlas: $lvb (l=e,\mu)$ Selection: Single lepton trigger Isolated lepton with $p_T>30$ GeV Missing $E_T > 35$ GeV == 1 jet with $p_T>25$ GeV B-tagging:

1 b-tag jets (ε=57%, ε_light=0.2%)

Reconstruction/Analysis: $M_T(W) + ME_T > 60 \text{ GeV}$

```
\stackrel{4}{\sim} M<sub>T</sub>(W) >150 GeV
\stackrel{4}{\sim} Work in region of M<sub>T</sub>(W) and | \Delta \varphi(l,b)|
```

Signal will stand at M_T(W)>200 GeV

Defined 3 control samples to validate simulated background in W+jets enriched , multijet and ttbar enriched.

14

Monotop - Results - Atlas

ipnl

Stop searches

Generic analysis mainly performed in pair of stop produced → Could have only one top in the final state if second object decaying in other mode

Analysis not really taking into account the Top presence by reconstructing the object, only working via "boxes" following the variables:

variables:	Requirements					
	Box	Lepton	b-tag	Kinematic	Jet	
	Two-lepton boxes					
	MuElo	\geq 1 tight electron and				
$\mathrm{M_R} \; \equiv \; \sqrt{(ec{p}^{\mathrm{j}_1} + ec{p}^{\mathrm{j}_2})^2 - (p_z^{\mathrm{l}_1} + p_z^{\mathrm{l}_2})^2} \; ,$	WILLIE	\geq 1 loose muon		$(M_R > 300 \mbox{ GeV} \mbox{ and } R^2 > 0.15) \mbox{ and } (M_R > 350 \mbox{ GeV} \mbox{ or } R^2 > 0.2)$	\geq 2 jets	
$\begin{split} M_{T}^{R} &\equiv \sqrt{\frac{E_{T}^{miss}(p_{T}^{j_{1}}+p_{T}^{j_{2}})-\vec{E}_{T}^{miss}\cdot(\vec{p}_{T}^{j_{1}}+\vec{p}_{T}^{j_{2}})}{2}} \ , \\ &= M_{T}^{R} \end{split}$	MuMu	\geq 1 tight muon and	\geq 1 b-tag			
		\geq 1 loose muon				
	EleEle	\geq 1 tight electron and				
		\geq 1 loose electron				
	Single-lepton boxes					
$R \equiv \frac{1}{M}$.	MuMultiJet	1 tight muon		$(M_R>300~{ m GeV}$ and $R^2>0.15)$ and	\geq 4 jets	
M_R	EleMultiJet	1 tight electron	> 1 h-tag			
	MuJet	1 tight muon	= 10 mg (M _R > 350 GeV or R ² > 0.2		2 or 3 jets	
	EleJet	1 tight electron			2 01 5 jets	
	Hadronic boxes					
	MultiJet	none	\geq 1 b-tag	$(M_R > 400 \text{ GeV and } R^2 > 0.25)$ and	\geq 4 jets	
CERN-PH-EP-2014-015	\geq 2 b-tagged jet	none	\geq 2 b-tag	$(M_R > 450 \text{ GeV or } R^2 > 0.3)$	2 or 3 je t5	

Single Production

+ h.c., $\mathcal{L} = \frac{g_2}{\sqrt{2}} W^+_{\mu} \bar{t} \gamma^{\mu} (g_L P_L + g_R P_R) b^* + \text{h.c.}.$ Letters Β

721

(2013)

171-189

18

ipn Single b*/' production (7 TeV)

- Atlas: lvbjj (l=e,µ) or lvlvb 2 cases: excited b-quark (b*), vector like quark (VLQ) (b')
- Lagrangians:

$$\mathcal{L} = \frac{g_s}{2\Lambda} G_{\mu\nu} \bar{b} \,\sigma^{\mu\nu} (\kappa_L^b P_L + \kappa_R^b P_R) b^* + \text{h.c.},$$

Selection:

Single lepton trigger **Isolated lepton with p_{T} > 25 GeV** Jets with $p_T > 30$ (25) GeV (I+jets) **B-tagging: b-tag jets (\epsilon=70%) Reconstruction/Analysis:** L+jets: $1 \mu + ME_{T} > 25 \text{ GeV}$ or 1e + ME_T>30 GeV $M_T(W) + ME_T > 60 \text{ GeV}$ $M_{T}(W) > 30 \text{ GeV}$ >=3 jets **==1 b-jet**

Dilepton:

2 opposite charge lepton $|Z_{mass} - m(II)| > 10 \text{ GeV}$ **ME_T>50 GeV** $|\Delta \phi(I,ME_T)| < 2.5 \text{ rad}$ **==1 b-jet**

 b^*

Single b*/' production - Results

In Lepton + jets channel: Full mass reconstructed by considering ME_T pz=0

In Dilepton channel: HT is the main discriminative variable

Events / GeV

g_{I/R}

Vector Like Quark B'/T', so far CMS looked for pair production, but single production can be interesting too...

Containing a Z in the final state \rightarrow use lepton decay (full mass reconstruction) Triggers: single lepton triggers 2 leptons opposite charge same flavor $|Z_{mass} - m(II)| < 10 \text{ GeV}$

[Event selection						
	Z boson candidate preselection						
ø		$\geq 2 \text{ cent}$	itral jets				
8 7 8	$p_{\rm T}(Z) \ge 150 { m ~GeV}$						
14	Dilepton	channel	Trilepton channel				
-20	= 2 le	eptons	≥ 3 leptons				
ы Ш	$\geq 2 \ b$ -tag	gged jets	$\geq 1 \ b$ -tagged jet				
Ŧ	Pair production	Single production	Pair production	Single production			
ż	$H_{\rm T}(\text{jets}) \ge 600 \text{ GeV}$	$(jets) \ge 600 \text{ GeV} \ge 1 \text{ fwd. jet}$		≥ 1 fwd. jet			
Щ[Final discriminant						
	m(z)	Zb)	$H_{\rm T}({\rm jets+leptons})$				

Forward jets: pt>20 GeV and 2.5<|η|<**4.5**

ipnl

Using fully the properties of the single production mode in the selection.

H_T(jets+leptons) [GeV]

Presenting limits only on the "single production mode" of B'/T'.

Single T' production in CMS

First look on going (samples just got produced at 8 TeV): On going analysis (no public results yet) in tH final state Look for full hadronic mode for the moment, following pheno studies, signal can be extracted thanks to full reconstruction of the events (relying on top and Higgs presence to decrease background).

A lot of varieties of analysis have top quark in the final state:

Top is the most massive quark so far, its decay is used to select the events (either b-quark or lepton from the W)

Other particles produced in single production mode → Start to use forward jet, expertise from single Top

→ A lot of more analysis to start with 13 TeV data to push limit forward!