

CMS Single Top Measurements

(Standard model)

Abideh Jafari UCLouvain and FNRS

Introduction

- At hadron colliders:
- Dominant: Pair production via strong interactions
- Sub-dominant: single production via EWK interaction

Discovery at Tevatron via Super Discriminant while LHC is a top factory

Why single-top?

- Sensitive to **new physics!**
 - FCNC, Anomalous couplings
 - New particles (W', H^{\pm})
- Characteristic scenario for SM measurements
 - Top polarization, W helicity, top mass, $|V_{tb}|$
- Background in searches
 - SUSY, Higgs

We will look at production cross sections (all), $|V_{tb}|$ (t-, tW-channel), properties (t-channel) ²

T-CHANNEL

FOCUS ON NEW RESULTS

N. Kidonakis (Phys. Rev. D 83 2011):

• 8 TeV: 87.8^{+3.4}_{-1.9} pb

• 7 TeV: 64.6 ± 3.4 pb

t-channel cross section

- Light jet (j') with large pseudorapidity, η_{j'}
- High p_T lepton (μ, e)
- Missing transverse energy (MET)
- b-quark jet, high p_T , in the central part of the detector
- Additional soft b-quark jet with broader η

Generic Selection:

1 lepton + 2 Jet, 1 is b-Tagged + MET-related criteria

Backgrounds:

• Generic selection in 2J1T for signal

- Generic selection in 2J1T for signal
- $t\bar{t}$ background is corrected using 3J2T

• Generic selection in 2J1T for signal

• $t\bar{t}$ background is corrected using 3J2T

• W/Z+jets validated in 2J0T

- Shape is taken from SB data
 - Similar heavy-flavor content

$$\beta_{Wjets} = \beta_{data} - \beta_{rest}$$

- Generic selection in 2J1T for signal
- $t\bar{t}$ background is corrected using 3J2T
- W/Z+jets validated in 2J0T
- Shape is taken from SB data
 - Similar heavy-flavor content

JHEP06(2014)090

- Template fit to $|\eta|$ of the non-tagged jet $\frac{\eta}{2}$ Backgrounds treated as constrained parameters
- Other systematics from pseudoexperiments
- Fit is done inclusively and for ℓ^+ and

• Template fit to $|\eta|$ of the non-tagged jet

JHEP06(2014)090

$$\sigma_{\text{tot}} = 83.6 \pm 2.3 \text{ (stat.)} \pm 7.4 \text{ (syst.) pb}$$

$$\sigma_{\rm t} = 53.8 \pm 1.5 \, ({\rm stat.}) \pm 4.4 \, ({\rm syst.}) \, {\rm pb}$$

$$\sigma_{\bar{t}} = 27.6 \pm 1.3 \text{ (stat.)} \pm 3.7 \text{ (syst.) pb}$$

 $R_{t-ch} = 1.95 \pm 0.1(stat.)$

 ± 0.19 (syst.)

Signal modeling

CMS, √s = 8 TeV, L = 19.7 fb⁻¹

 $m_t = 172.5 \text{ GeV}$

PDF

The ratio between cross sections at 7 and 8 TeV:

$$R_{8/7} = \frac{\sigma_{8TeV}}{\sigma_{7TeV}} = 1.24 \pm 0.08 \text{ (stat.)} \pm 0.12 \text{ (syst.)}$$

• The $|V_{tb}|$ results are also combined with BLUE: Assuming $|V_{tb}| \gg |V_{ts}|$, $|V_{td}|$,

√s [TeV]

Differential t-channel at 8TeV (19.7 fb⁻¹)

NEW

- Similar selection to inclusive cross section is used
- An artificial neural network is trained in signal region
 - Same NN output applied to control regions
- Background modeling is validated in 3J2T for $t\bar{t}$ and 2J0T for W+jets
- Likelihood fit to NN output in 2J1T and 3J2T
- Backgrounds treated as constrained parameters

TOP-14-004

Differential t-channel at 8TeV (19.7 fb⁻¹)

Differential t-channel at 8TeV (19.7 fb⁻¹)

Background subtracted distributions unfolded to parton-level

• Unfolding is verified to be stable and unbiased

• Impressive agreement with the theory!

 E_T^{miss} , JES

W-helicity, single-top topology 8TeV (19.7fb⁻¹)

• Partial decay of top quark with $\mathbf{F_i} \equiv \frac{\mathbf{I_i}}{\mathbf{r_i}}$

$$\mathbf{F_i} \equiv \frac{\mathbf{r_i}}{\Gamma}$$

Negative

Helicity

arXiv:1410.1154

Positive

Helicity

$$\rho_{\vec{\mathbf{F}}} \equiv \frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_l^*} = \frac{3}{8} (1 - \cos\theta_l^*)^2 \mathbf{F_I}$$

 $\rho_{\vec{\mathbf{F}}} \equiv \frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_l^*} = \frac{3}{8} (1 - \cos\theta_l^*)^2 \mathbf{F_L} + \frac{3}{4} \sin\theta_l^* \mathbf{F_0} + \frac{3}{8} (1 + \cos\theta_l^*)^2 \mathbf{F_R}$

$$\Gamma_{0 \text{ (L,R)}} \propto \frac{m_t^2}{m_W^2} \left[\left| f_V^L \right|^2 + \left| f_V^R \right|^2 \right] \mathcal{F}_{1 \text{ (2)}} \left(m_W^2, m_b^2 \right) \\
+ \left[\left| f_T^L \right|^2 + \left| f_T^R \right|^2 \right] \mathcal{F}_{2 \text{ (1)}} \left(m_W^2, m_b^2 \right) + \cdots$$

- tWb anomalous couplings are reflected in angular decay distribution of $\cos \theta_I^*$
- Looking at the same physics in different phase space than $t\bar{t}$
- Same selection as t-channel cross section
- Signal is every process that includes $t \to b\ell\nu$
 - Contributions from $t\bar{t}$ are taken into account
- Results at e- and μ -channels are combined using their likelihoods

Longitudinal

Helicity

W-helicity, single-top topology 8TeV (19.7fb⁻¹)

Likelihood fit, W-helicities and W+jets contamination simultaneously

e + μ : consistent with SM

arXiv:1410.1154

$$F_{\rm L} = 0.298 \pm 0.028 \, ({\rm stat.}) \pm 0.032 \, ({\rm syst.}),$$

 $F_{\rm 0} = 0.720 \pm 0.039 \, ({\rm stat.}) \pm 0.037 \, ({\rm syst.}),$
 $F_{\rm R} = -0.018 \pm 0.019 \, ({\rm stat.}) \pm 0.011 \, ({\rm syst.})$

Signal modeling

Used to set limits on anomalous couplings (talk by J. Andrea)

W-helicity, single-top topology 8TeV (19.7fb⁻¹)

- Results from single-top are competitive, despite smaller statistics
- Single-top and top-pairs: independent datasets: gain in combination.

All in $t\bar{t}$ sector

Top quark polarization

- The sample is statistically a mix of ↑ and ↓ top quarks
- We measure the spin asymmetry:

$$A_{l} \equiv \frac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)} = \frac{1}{2} \cdot P_{t} \cdot \alpha_{l}$$

Test of the SM in the tWb vertex via the top polarization

Single-top quark in t-channel:

produced 100% polarized in the direction of charged lepton due to V-A coupling

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} = \frac{1}{2} (1 + P_t \alpha_t \cos\theta^*)$$

$$\theta^* \equiv \measuredangle(l, q') \text{ in top}$$

top polarization

Correlation degree or spin analyzing power SM: $\alpha_1 \approx 1$ for charged lepton

Experimentally:

we select the t-channel event: $1 \text{ lepton} + 1 \text{ light jet} + 1 \text{ b-tagged jet } + \dots$

$$\theta^* \equiv \not \preceq (l, q')$$

rest frame

Top quark polarization

The output of a Boosted Decision Tree is used to

- 1. Determine the background contributions
- 2. Enrich the signal sample

Background validation: 3J1T, 3J2T ($t\bar{t}$), 2J0T W+jets

MadGraph W+jets shape is corrected with SHERPA

The detector effects are resolved via unfolding

 $A_l = 0.41 \pm 0.06 \text{(stat.)} \pm 0.16 \text{(syst.)}$

Combination

$$A_l \equiv \frac{1}{2} P_t \cdot \alpha_l$$
 and $\alpha_l \approx 1$

Muon

$$A_l = 0.42 \pm 0.07 \text{(stat.)} \pm 0.15 \text{(syst.)}$$

 $P_t = 0.82 \pm 0.12$ (stat.) ± 0.32 (syst.)

Electron $A_l = 0.31 \pm 0.11 \text{(stat.)} \pm 0.23 \text{(syst.)}$

CMS-TOP-13-001

JEC

TW-CHANNEL

FOCUS ON NEW RESULTS

 σ_{th} : 22.2 ± 0.6 ± 1.4 pb

Kidonakis, arXiv:1210.7813

tW cross section and combination with ATLAS

MET ambiguity: Not possible to fully reconstruct the top quark or W-boson

tW cross section at 8 TeV (12.2 fb⁻¹)

- A **Likelihood fit** is performed on a **BDT (13 var.)** output over all three channels $(\mu\mu, e\mu, ee)$ and all three regions (1j1t, 2j1t, 2j2t)
- Templates for signal and background taken from simulation
- Uncertainties as nuisance parameters in the fit
 - All constrained with data except theory and luminosity
 - **Main:** modeling of $t\bar{t}$ and scale

Phys. Rev. Lett. 112

tW cross section at 8 TeV (12.2 fb⁻¹)

Observation with a Significance of

 6.1σ (expected: 5.4 ± 1.4)

Phys. Rev. Lett. 112

Cross section 23.4 \pm 5.4 pb (th. : 22.2 \pm 0.6 \pm 1.4 pb)

Assuming $|V_{tb}| \gg |V_{ts}|$, $|V_{td}|$:

$$|V_{tb}| = 1.03 \pm 0.12(exp.) \pm 0.04(th.)$$

Constrained $|V_{tb}| < 1$: $|V_{tb}| > 0.78 @95\%$ C.L.

tW cross section at 8 TeV (combination)

• The results of the two experiments are combined using BLUE

•
$$|f_V^L \mathbf{V}_{tb}| = 1.06 \pm 0.11$$

• Constrained $|f_V^L| = 1 \& |V_{tb}| \le 1$: $|V_{tb}| > 0.79 @95\% \text{ C.L.}$

Hear more in the talk by L. Lista

S-CHANNEL FOCUS ON NEWER RESULTS

s-channel cross section

• SM expectation at 8 TeV:

$$\sigma_{s-ch} = 5.55 \pm 0.08 \pm 0.21 \text{ pb}$$

N. Kidonakis (1205.3453)

- **Signature:** 1 lepton + 2 b-jets + MET-related quantities
- Backgrounds: tt, W+jets, t-channel

- **Signature:** 1 lepton + 2 b-jets +MET-related quantities
- Backgrounds: tt, W+jets, t-channel
- SM expectation at 8 TeV: $\sigma_{s\text{-ch}} = 5.55 \pm 0.08 \pm 0.21 \text{ pb}$

- A likelihood fit on the BDT output in signal (2J2T) and tt (3J2T) control regions
- Backgrounds (tt, W+jets) are constrained in the fit
- Pseudo experiments for theory and instrumental systematics

Summary on single-top cross sections

Complementarities to Run I Analyses

An step-wise view of CMS single-top analyses in Run I

Complementarities to Run I Analyses

An step-wise view of CMS single-top analyses in Run I

t-channel

- Cross section in a fiducial volume
 - Less model-dependent
 - Understand the acceptance w.r.t the inclusive measurement
- Top mass measurement

tW

• Looking for evidence in alternative final states (1 + jets)

s-channel

• Combination with 7 TeV to gain in sensitivity

We are here!!

Run II: a possible plan

Last year in Naples

By Luca Lista

- Plan for the very first data (first on fb⁻¹):
 - Measure the t channel cross section at 14 TeV ("rediscovery"), including charge ratio
 - Study top polarization and differential distributions check the agreement with the Standard Model
 - Look for deviations for SM: FCNC (tZ, tγ)
 - Measure the top mass in single-top events
 - Should be done also at 7, 8 TeV!
- With more data (10 fb^{-1}) :
 - Rediscover tW

We're on it

- Look for SM tZ, few % of t channel
- With even more data
 - Try again with the s channel may require hundreds of fb⁻¹!

	t ch.	tW ch.	s ch.	tt~
7 TeV	64.6pb	15.6pb	4.59pb	172.0pb
11.5			AND	
8 TeV	87.6pb	22.2pb	5.55pb	245.8pb
14 TeV	248.1pb (×3.2)	84.8pb (×3.8)	11.86pb (×2.1)	953.6pb (×3.9)

Preliminary plan for Run II

•LHC data at 13 TeV is arriving ...

31

Preliminary plan for Run II

The roadmap

- We are approaching the first collisions at highest energy ever reached
- With very first fb⁻¹ of data we plan to rediscover t-channel
- Search for (possibly rediscover) tW ~ 3 fb⁻¹
- Redraw the single-top bird with ~ 10 fb⁻¹
 - s-channel might be too challenging

Where we stand

- A lot of effort invested into the trigger design
 - Main triggers and backup paths prepared
- Benefit from detailed generator studies, developments
- The baseline of the high priority analyses will be checked on simulated samples provided by CMS
- We will be ready by the time of the data taking ...

Summary

- CMS has performed very well during run I
 - Precise cross section measurements
 - Observation and stringent upper limit
 - Precise property measurements
- Additional results are coming to sharpen the image even more
- Stay tuned https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP
- The plan is established for the first few fb⁻¹ of pp collisions
 - t-channel at ~ 1 fb⁻¹ and tW at 3 fb⁻¹
- Within a CMS-wide effort, the single-top team is ready for new data

BACKUP

t-channel cross sections: | V_{th} | in 7 TeV

	Theory PRD 83 (2011)	ATLAS 4.6 fb ⁻¹ 1406.7844v1	CMS 1.14 fb ⁻¹ <u>JHEP12(2012) 035</u>
σ (t-chan)	$64.6 \pm 3.4 \text{ pb}$	68 ± 8 pb	$67.2 \pm 6.1 \text{ pb}$

- With tWb vertex in production, t-channel cross section depends on $|V_{tb}|$
- Assuming $|V_{td}|$, $|V_{ts}| << |V_{tb}|$ and the interaction being purely left-handed

$$|V_{tb}| = \sqrt{\frac{\sigma_{meas}}{\sigma_{theo}}}$$

ATLAS:
$$|V_{tb}| = 1.02 \pm 0.07$$
 $|V_{tb}| < 1 \implies 0.88 < |V_{tb}| <= 1 @ 95\% C.L.$

CMS:
$$|V_{tb}| = 1.020 \pm 0.049$$

 $|V_{tb}| < 1 \implies 0.92 < |V_{tb}| <= 1 @ 95\% C.L.$

- Measurement in a fiducial volume
- Fit to NN output in the signal (2J1T) region
- Backgrounds as constrained nuisance parameters
 - Validated in 2J2T ($t\bar{t}$) and 2J0T (W+jets)
- Systematics from pseudo-experiments
- How? A truth (fiducial) phase space close to selected data
 - Truth objects (leptons, jets,...) defined close to reco. ones using final state particles.

$$\sigma_{\rm fid} = 3.37 \pm 0.05 ({\rm stat.}) \pm 0.47 ({\rm syst.}) \pm 0.09 ({\rm lumi.}) ~\rm pb$$

Signal

generator

JES

• Main benefit:

- Marginal effect due to acceptance
- Affected mainly by efficiencies so less model-dependent

	Generator	PDF	Total
Fiducial	8%	1%	14%
Inclusive	13%	4%	17%

• Understand the acceptance in comparison with the inclusive measurement

Extrapolated

$$\sigma = \frac{1}{\epsilon_{fid}} \cdot \sigma_{fid}$$

aMC@NLO + Herwig

$$\sigma = 82.6 \pm 1.2 \text{(stat.)} \pm 11.4 \text{(syst.)} \pm 3.1 \text{ (PDF)} \pm 2.3 \text{ (lumi.)}$$

- Generic selection (see backup).
- Different categories number of jets and b-tagged jets

Neural Network:

- Backgrounds and systematics as nuisance parameters
- Signal: 2J1T, 3J1T
- Constraining backgrounds,
 b-tag efficiency, etc.:
 4J1T, 2J2T, 3J2T, 4J2T

Boosted Decision Tree:

- Backgrounds and systematics as nuisance parameters
- Signal: 2J1T, 3J1T
- Constraining backgrounds,
 b-tag efficiency, etc.:
 4J1T, 2J2T, 3J2T, 4J2T

JHEP12(2012) 035

$|\eta_{i'}|$ fit:

- Template fit with datadriven backgrounds
- Signal: 2J1T
- Check the modeling of backgrounds:
 3J2T, 2J0T

t-channel cross sections CMS 8 TeV

μ and e combined

Uncertainty source	$\sigma_{t\text{-ch.}}$ (%)	
Statistical uncertainty	± 2.7	
JES, JER, MET, and pileup	\pm 4.3	
b-tagging and mis-tag	± 2.5	Me
Lepton reconstruction/trig.	± 0.6	
QCD multijet estimation	\pm 2.3	
W+jets, tt estimation	\pm 2.2	
Other backgrounds ratio	± 0.3	
Signal modeling	\pm 5.7	
PDF uncertainty	± 1.9	
Simulation sample size	± 0.7	
Luminosity	\pm 2.6	
Total systematic	± 8.9	
Total uncertainty	± 9.3	
Measured cross section	83.6 ± 7.8 1	ob

Uncertainty source	$\sigma_{t\text{-ch.}}(t)$ (%)	$\sigma_{t\text{-ch.}}(\overline{t})$ (%)	$R_{t\text{-ch.}}$ (%)
Statistical uncertainty	± 2.7	\pm 4.9	\pm 5.1
JES, JER, MET, and pileup	\pm 4.2	± 5.2	± 1.1
b-tagging and mis-tag	± 2.6	± 2.6	± 0.2
Lepton reconstruction/trig.	± 0.5	± 0.5	±0.3
QCD multijet estimation	± 1.6	± 3.5	±1.9
W+jets, tt estimation	± 1.7	± 3.6	± 3.0
Other backgrounds ratio	± 0.1	± 0.2	± 0.6
Signal modeling	± 4.9	± 9.4	\pm 6.1
PDF uncertainty	± 2.5	± 4.8	\pm 6.2
Simulation sample size	± 0.6	± 1.1	\pm 1.2
Luminosity	\pm 2.6	\pm 2.6	_
Total systematic	± 8.2	± 13.4	± 9.6
Total uncertainty	± 8.7	\pm 14.2	± 10.9
Measured cross section or ratio	$53.8 \pm 4.7 \mathrm{pb}$	$27.6 \pm 3.9 \mathrm{pb}$	1.95 ± 0.21

$$\sigma_{t\text{-ch.}}^{\text{theo.}}(\mathsf{t}) = 56.4^{+2.1}_{-0.3} \, (\text{scale}) \pm 1.1 \, (\text{PDF}) \, \text{pb},$$
 $\sigma_{t\text{-ch.}}^{\text{theo.}}(\bar{\mathsf{t}}) = 30.7 \pm 0.7 \, (\text{scale})^{+0.9}_{-1.1} \, (\text{PDF}) \, \text{pb}.$

$$\sigma_{t\text{-ch.}}^{\text{theo.}} = 87.2^{+2.8}_{-1.0} (\text{scale})^{+2.0}_{-2.2} (\text{PDF}) \text{ pb,}$$

N. Kidonakis, 1205.3453

t-channel top polarization CMS

Similar processes in shape are combined:

- tt, s, tW QCD 20% constraint
- VV and V+jets (unconstrained)

Wjets systematics:

- light of 11%,
- reweighting 50%,
- HF 0.5 and 2

Constant unfolding bias treated as systematic

Combination with BLUE

Only lepton efficiencies uncorrelated

Uncertainty source	δA_l^{μ}	δA_l^e
generator	0.025	0.009
Q^2 scale t -channel	0.024	0.055
Q² scale, t t	0.015	0.005
Q ² scale, W+jets	0.036	0.038
top quark mass	0.058	0.042
W+jets shape	0.016	0.007
W+jets flavour	0.005	0.008
top p_T , t \bar{t}	0.010	0.025
matching, tī	0.028	0.052
matching, W+jets	0.025	0.038
PDF	0.013	0.014
JES	0.074	0.074
JER	0.016	0.179
unclustered ₽ _T	0.013	0.006
lepton ID and isolation	0.001	0.002
lepton trigger	0.001	0.002
pileup	0.015	0.002
b tagging	0.007	0.009
mistagging	0.001	0.003
lepton weight	0.001	0.009
anti-isolation range of QCD	0.010	0.053
QCD fraction	0.092	0.028
background fractions	0.007	0.018
unfolding bias	0.002	0.003
total systematics	0.15	0.23
statistical	0.07	0.11
total	0.17	0.26

 $+ \cup$

tW-channel CMS

Systematic uncertainty	$\Delta\sigma$ (pb)	$\Delta \sigma / \sigma$	Notes
ME/PS matching thresholds	3.3	14%	Matching threshold 2× and 1/2× nominal 20 GeV value in tt simulation
Renormalization/factorization scale	2.9	12%	Scale value 2× and 1/2× nominal value of $m_t^2 + \sum p_T^2$ in $t\bar{t}$ and tW simulation
Top-quark mass	2.2	9%	$m_{\rm t}$ varied in tW and tt simulation by $\pm 2{\rm GeV}$
Fit statistical	1.9	8%	Remaining uncertainty in fit when all other systematic uncertainties are removed
Jet energy scale	0.9	4%	Jet energy scale varied up/down
Luminosity	0.7	3%	2.6% uncertainty in the measured luminosity
Z+jets data/simulation scale factor	0.6	3%	Varying scale factors used for correcting Z+jets E _T ^{miss} simulation
tW DR/DS scheme	0.5	2%	Difference between DR and DS scheme used for defining tW signal
tt cross section	0.4	2%	Uncertainty in the cross section of tt production
Lepton identification	0.4	2%	Uncertainty in scale factors for lepton efficiencies between data/simulation
PDF	0.4	2%	From choice of PDF
Jet energy resolution	0.2	1%	Energy resolution for jets varied up/down
b-tagging data/simulation scale factor	0.2	< 1%	Variations in scale factors
tt spin correlations	0.1	< 1%	Difference between tt simulation with/without spin correlations
Pileup	0.1	< 1%	Varying effect of pileup
Top-quark p _T reweighting	0.1	< 1%	Uncertainty due to differences in top quark p_T between data and $t\bar{t}$ simulation
$E_{\rm T}^{\rm miss}$ modeling	0.1	< 1%	Uncertainty in amount of unclustered $E_{\rm T}^{\rm miss}$
Lepton energy scale	0.1	< 1%	Uncertainty in energy of leptons
Total	5.5	24%	

tW-channel combination

ATLAS and CMS have similar event yields for signal and background. However, the discriminant distributions in the signal-dominated one-jet region differ. CMS has more expected signal events in the high-discriminant region, and more bins in that region than ATLAS.

tW cross section at 8 TeV (20.3 fb⁻¹)

• A **Likelihood fit** is performed on a **BDT (19 var.)** output over eμ channel and the

two regions (<mark>1j1t, 2j≥1t)</mark>

- **Templates** for signal and background taken from **simulation**
- Normalization for fake from data
- Uncertainties estimated using pseudoexperiments
 - **Main:** Wt and $t\bar{t}$ modelling

ATLAS-CONF-2013-100

Significance: 4.2σ (expected: 4.0)

Cross section (tW+X):

27.2 ± 2.8 (stat.) ± 5.4 (syst.) pb (th. : 22.2 ± 0.6 ± 1.4 pb)

With $|V_{tb}| \gg |V_{ts}|$, $|V_{td}|$:

 $|f_V^L V_{tb}|$: 1.10 ± 0.12(exp.) ± 0.03(th.)

Constrained $|f_V^L| = 1$: $|V_{tb}| > 0.72 @95\%$ C.L.

tW cross section at 8 TeV (combination)

• The results of the two experiments are combined using BLUE

- Correlated systematics
 - Theory modeling ($\rho = 1$)
 - Luminosity ($\rho = 0.31$)
 - B-tagging ($\rho = 0.5$)
- Stability checked for different ρ assumptions
- Dominant systematic:
 - Theory modeling
- $|f_V^L V_{tb}|$: 1.06 ± 0.11
- Constrained $|f_V^L| = 1 \& |V_{tb}| \le 1$: $|V_{tb}| > 0.79 @95\% \text{ C.L.}$

