

CLIC Breakdown Workshop

Ion Current from Breakdowns in RF Structures

Magnus Johnson Uppsala University

Supported by Swedish Research Council and the Knut and Alice Wallenberg Foundation

Outline

-Set-up

-Measurements

General observations

-Results

Analytical calculations: results and limitations

Estimations of breakdown site size

-Surface analysis of FC

Results, comparison with ion current measurements

-Conclusion

30 GHz test-stand

2008-05-20

Magnus Johnson, Uppsala University

Setup

Faraday-Cup

Measurements

- Data acquired in 2007:
 - August 20th October 8th (HDSthick)
 - November 1st December 14th (NDSthick)

- •6700 ion current events recorded
 - Significant ion currents detected after 40% of breakdown events (overall).

Sample ion currents

- •Triggered on e⁻ signal
- •5 µs delay
- •Ion currents detected on 30-70% of all breakdown events.
- •No obvious dependence on RF, conditioning time etc....

Sample ion currents

Analytical calculations – Coulomb explosion

Arrival time spectrum from hot Coulomb explosion:

$$dN/dt = f(N_0, \alpha, t_s, t)$$

(Ziemann NIM. A 575 (2007))

- •**N**₀ = number of particles in sphere.
- •α = relative importance Coulomb forces vs thermal motion, allows for calculation of temperature T
- •t_s = arrival time of fastest ions from cold distribution. Determine time of peak.
- •**t** = time

Theory - Applied

How does this fit measured ion currents?

Fit of events with one peak works well.

Events with several peaks can be fit with a simple sum.

Theory *does not* work for different masses/charge states....

....which we maybe see in the measurements....

....thus need

*Simulations

*Experimental means to measure charge-mass ratio (e.g dipole magnet)

Theory - Fit

N0 = 1.32 *10
10
 α = 0.4128 \rightarrow T = 900 000 K ts =5.2 μ s

N0₁ = 1.61*10¹⁰ ts1 = 19
$$\mu$$
s
N0₂ = 0.75*10¹⁰ ts2 = 6 μ s
 α_1 = 0.52 \rightarrow T = 115 000 K
 α_2 = 0.27 \rightarrow T = 312 000 K

Results - breakdown site size

- •Average number of particles reaching FC per ion current event ~10¹⁰.
- •10¹³ ions in each breakdown site (FC covers 1/1000 of total solid angle).
- This is equivalent of a copper cube with
 5 µm side.

XPS result

Where is the copper?

Visual inspection of FC: **no copper.**

Bulk sensitive analysis: **no copper.**

Surface sensitive analysis, XPS: copper! (thanks Mauro, Delphine and Luigi!)

Comparison XPS – number of particles

XPS analysis:

We still see some of the bulk material

Assume a nm thick layer of copper (could be 0.3 – 3 nm), homogeneously distributed on FC surface

→ 8*10⁻¹² kg copper / mm² (Again: Thanks Mauro!)

Ion current measurements:

Mean number of ions per ion current event

≈ 10¹⁰ ions (assuming singular ionized)

Assume 10⁶ ion current events (total for all copper structures)

→ 1.38*10⁻¹² kg copper / mm²

Conclusions

Ion current events have 3 components

"Fast", "Medium" and "Slow"

Multiple breakdown sites?

Multiple ion spices?

Multiple ionization states?

Hot Coulomb explosion theory gives nice fits...

- ...but does not describe multiple ion spices or ionization states
 - -Simulations needed (work in progress).
 - -Add spectrometer to 30 GHz test stand?

Amount of copper seen on FC with XPS is consistent with estimations from ion current measurements

Fin

Arrival time spectrum – hot Coulomb explosion

Arrival-time spectrum *dN/dt* given by:

where the function V_2 with input arguments w and s is given by:

> 3 free parameters:

$$\frac{dN}{dt} = \frac{3N_0\alpha^2}{\sqrt{\pi}t_s} \left(\frac{t_s}{t}\right)^2 V_2 \left(\frac{1}{\alpha}, \frac{1}{\alpha}\frac{t_s}{t}\right),$$

$$V_2(w,s) = \frac{s}{2}e^{-s^2} - \frac{s+w}{2}e^{-(s-w)^2} + \frac{\sqrt{\pi}}{2}\left(s^2 + \frac{1}{2}\right)(erf(s) - erf(s-w)).$$

$$N_0 = \frac{4\pi \rho R^3}{3}$$

$$\alpha = \sqrt{2}\sigma / v_s,$$

$$\sigma = \sqrt{kT/m}$$

$$\alpha = \sqrt{2\sigma / v_s},$$

$$\sigma = \sqrt{kT/m}$$

$$t_s = L/v_s$$

 N_0 : Number of particles in initial sphere,

p: the number density of initial sphere,

R: the radius of initial sphere.

a: RMS width of thermal velocity distribution divided by v_s,

k: Boltzmanns constant.

T: the temperature of the initial charge distribution,

m: the mass of the ions.

 t_s : arrival time of the fastest ions from cold distribution,

L is the distance from the detector to the Coulomb explosion,

 v_s is the velocity of the fastest ions from a cold Coulomb explosion

HV bias box

FC (left) sees a high-pass filter with cut-off frequency of 1.5 Hz

HV (bottom) sees a low-pass filter with cut-off frequency of 1.5 Hz

Signal out (right) is decoupled by a capacitance, and has 0 bias voltage.

Cu and Mo properties

Boiling point

- Cu: 2855 [K]

- Mo: 5830 [K]

Heat of vaporization

- Cu: 4.75 [MJ/kg]

– Mo: 6.83 [MJ/kg]

Energy per RF pulse1 [J]

- enough to vaporize order of 1 mg material
- 1 mg copper corresponds to a sphere with radius R=0.3 [mm]

Ionization energy

 $- Cu: E_{ion} = 7.478 [eV]$

- Mo: $E_{ion} = 7.099$ [eV]

Temperature needed to ionize Cu:

$$E_{ion} = (3/2) k_B T_{ion}$$

 $\rightarrow T_{ion} = 2 E_{ion} / (3 k_B)$
 $\approx 100 [kK]$

Schematic Signal

