PanDA@LCF. Experience and possible evolution

Danila Oleynik (UTA), Sergey Panitkin (BNL), Taylor Childers (ANL)

ATLAS TIM 2014

Outline

- Overview of current status
 - PanDA@LCF(HPC) architecture
 - PanDA@OLCF/NERSC (Titan, Hopper, Edison)
 - EventService on HPC
 - PanDA@ALCF (Mira)
- New trends
 - Data management
 - Software installation
 - Flexible tactic on HPC
- Workloads @ OLCF(Sergey)

Common features of HPC's

- Restricted/no external access to computing nodes
- Payload execution management only through a local batch system
- Special treatment of shared file systems
- No pledged resources (even if you have allocation, that doesn't correlate with priority of your tasks)
- Restricted configuration, and highly restricted system management.

PanDA@HPC (1/2)

PanDA@HPC (2/2)

- Pilot(s) executes on interactive node (or some edge node)
 - Allow all necessary connections with PanDA server
- Pilot interacts with local job scheduler to manage job
 - Build on high level abstraction layer (SAGA) for supporting wide range of batch system backends
 - MPI wrapper/overlay scripts that allow to run multiple "single node" workload instances in parallel on multiple HPC nodes. We do not modify workloads.
- Number of executing pilots should be equal or less than number of available slots in local scheduler
 - Increase efficiency of usage of HPC
- Stage in/out procedures goes through dedicated OLCF facility Data Transfer Nodes (DTN)
 - Speedup transfers

PanDA Pilot plugins model

- ATLAS modular pilot augmented with HPC specific classes
- RunJob class hierarchy
 - RunJob: used for running "normal" jobs
 - RunJobEvent: used for event service jobs on a grid site
 - RunJobHPC: common HPC code
 - HPC specifics are implemented in RunJobTitan, RunJobMira, ..
 - RunJobHPCEvent: ES capable module running on HPC Front- End
 - Knows how to submit jobs into an HPC using method from relevant RunJobHPC* class;
- Proper class selection through shchedconfig parameter

Inheritance diagram

RunJobTitan/Hopper/Edison

- Dedicated classes for execution of MPI payloads through HPC batch system
 - SAGA API used as an interface with HPC batch manager (PBS)
 - Close work with SAGA developers, for proper encapsulation of variety of PBS dialects
 - Instrumented for use of 'backfill' resources:
 - Special function collects information about available resources (number of free nodes and availability time) from MOAB
 - In plans: moving this functionality to SAGA API
 - PBS job parameters are formed according to available resources, queue policies and minimal requirements of PanDA job (min. number of nodes and min. walltime)
 - Introduced PBS wait time limit and retry mechanism

Event Service on HPCs (1/2)

NormalHPCjob

- Pilot running on HPC Front-End node launches RunJobHPC subprocess (RunJobTitan/Hopper/Edison/Mira/..) which submits the actual jobs into the HPC
- EventServiceHPCjob
 - Pilot running on HPC Front-End node launches RunJobHPCEvent subprocess which in turn
 - Downloads event ranges from server using normal https calls
 - Job definition and event ranges are placed in pickle files in standard location
 - Creates TAG files from EVGEN files, the PFC and the file containing EVGEN
 GUID to TAG file mappings to be used by Token Extractors and places them in standard location
 - Submits the Yoda suite into the HPC
 - Script launched as Rank 0: Yoda = Light weight JEDI
 - Script launched as Rank N: Droids/Droid launcher (which in turn runs AthenaMP)
 - Periodically looks for updated event range file from Yoda and updates server
 - Final heartbeat sent when all event ranges are processed

Event Service on HPCs (2/2)

- Mira is not x86 compatible machine:
 - Focus on standalone applications: Alpgen, Sherpa
- Integration with PanDA
 - RunJobMira class development in progress
 - Pilot will submit jobs to ARGO/Balsam and receive status info, then finally the output dataset
- Backfill studies are progressing, have filled 2/3 of Mira with Alpgen in backfill.

New trends. Data management

- Real BigData: special policy for data organization required, starting from understanding of new limitations;-)
- Single HPC job can use
 - Dozens of Tb of transient disk space
 - Up to hundreds of Gb of transient data during execution
 - Possibility of huge output
- Special treatments for IO, starting from Pilot itself
 - Change POSIX 'ls *' to platform oriented 'lfs find' etc.
 - Optimization of cleanup functions

Current AGIS UI limit on pilot's sandbox size

Hey, why only 350G?! I would like to have 2-5Tb limit for working directory on Titan! ;-)

New trends. Data management

Proposed use of FTS as data transfer tool at OLCF

New trends. Data management

- Why (Web)FTS?
 - Reliable file transfers between Grid and Cloud endpoints
 - Modular multi-protocol support
 - SRM, GridFTP, HTTP/WebDAV and XROOT
 - Can relay file transfers between endpoints with different protocols
 - Powerful service to manage transfers with web interface

New trends. Software installation

CVMFS & rsync doesn't work well for Titan (at least for the moment), but nothing new under the sun.

New trends. Software installation

- Installation should be formed as special job in PanDA
- Dedicated PanDA queue (install queue) should be used for this type of jobs, to avoid execution on CN
- Processing of this type of jobs should be done on login nodes (like regular grid job), execution backend will be known from queue parameter

New trends. Flexible tactics.

- 'Backfill' is great opportunity... unfortunately it's not always in place or job's requirements are not fitted for this type of treatment, and regular HPC submission can be more efficient.
 - Adaptive algorithm for covering this issue in development
- In 'backfill mode' is not possible to predict how many cores/nodes will be involved in processing. For some workflows it's important to have this information for proper adjustment of parameters in next submission.
 - This information can be provided to PanDA as soon as job execution started.

Conclusion

- OLCF and NERSC were integrated with PanDA using common pilot architecture (differences only to account for different site policies)
 - ALCF will use the same architecture
- Many standalone workloads tested
 - Alpgen, MadGraph, Powheg, Pythia, Geant4, Root
 - Production scale EvGen runs at ALCF and OLCF
- Significant progress with ATLAS SW on x86 compatible HPC machines (Titan, Hopper, Edison).
 - ATLAS releases installation via pacman
 - AthenaMP, Reco.trf tested
- Next steps:
 - Tests with multiple simultaneously Pilots
 - Improving of algorithm for resource grabbing
 - Integration with production system

Acknowledgments

- Kaushik De
- Vakhtang Tsulaia
- Paul Nilsson & Wen Guan
- Andrey Kiryanov (FTS Team)

OLCF. Payloads (Sergey Panitkin (BNL))

