
PanDA@LCF. Experience and
possible evolution

Danila Oleynik (UTA), Sergey Panitkin
(BNL), Taylor Childers (ANL)

ATLAS TIM 2014

Outline

• Overview of current status
– PanDA@LCF(HPC) architecture
– PanDA@OLCF/NERSC (Titan, Hopper, Edison)
– EventService on HPC
– PanDA@ALCF (Mira)

• New trends
– Data management
– Software installation
– Flexible tactic on HPC

• Workloads @ OLCF(Sergey)

2

Common features of HPC’s

• Restricted/no external access to computing
nodes

• Payload execution management only through a
local batch system

• Special treatment of shared file systems
• No pledged resources (even if you have

allocation, that doesn’t correlate with priority of
your tasks)

• Restricted configuration, and highly restricted
system management.

3

PanDA@HPC (1/2)

4

PanDA@HPC (2/2)

• Pilot(s) executes on interactive node (or some edge node)
– Allow all necessary connections with PanDA server

• Pilot interacts with local job scheduler to manage job
– Build on high level abstraction layer (SAGA) for supporting wide range

of batch system backends
– MPI wrapper/overlay scripts that allow to run multiple “single node”

workload instances in parallel on multiple HPC nodes. We do not
modify workloads.

• Number of executing pilots should be equal or less than number of
available slots in local scheduler
– Increase efficiency of usage of HPC

• Stage in/out procedures goes through dedicated OLCF facility –
Data Transfer Nodes (DTN)
– Speedup transfers

5

PanDA Pilot plugins model

• ATLAS modular pilot augmented with HPC
specific classes

• RunJob class hierarchy

– RunJob: used for running “normal” jobs

– RunJobEvent: used for event service jobs
on a grid site

– RunJobHPC: common HPC code
• HPC specifics are implemented in RunJobTitan,

RunJobMira, ..

– RunJobHPCEvent: ES capable module
running on HPC Front- End
• Knows how to submit jobs into an HPC using

method from relevant RunJobHPC* class;

• Proper class selection through shchedconfig
parameter

6

RunJobTitan/Hopper/Edison

• Dedicated classes for execution of MPI payloads
through HPC batch system
– SAGA API used as an interface with HPC batch manager

(PBS)
• Close work with SAGA developers, for proper encapsulation of

variety of PBS dialects

– Instrumented for use of ‘backfill’ resources:
• Special function collects information about available resources

(number of free nodes and availability time) from MOAB
– In plans: moving this functionality to SAGA API

• PBS job parameters are formed according to available resources,
queue policies and minimal requirements of PanDA job (min.
number of nodes and min. walltime)

• Introduced PBS wait time limit and retry mechanism

7

Event Service on HPCs (1/2)
• NormalHPCjob

– Pilot running on HPC Front-End node launches RunJobHPC subprocess
(RunJobTitan/Hopper/Edison/Mira/..) which submits the actual jobs into the
HPC

• EventServiceHPCjob

– Pilot running on HPC Front-End node launches RunJobHPCEvent subprocess
which in turn
• Downloads event ranges from server using normal https calls

– Job definition and event ranges are placed in pickle files in standard location

– Creates TAG files from EVGEN files, the PFC and the file containing EVGEN
GUID to TAG file mappings to be used by Token Extractors and places them in
standard location

– Submits the Yoda suite into the HPC
• Script launched as Rank 0: Yoda = Light weight JEDI

• Script launched as Rank N: Droids/Droid launcher (which in turn runs AthenaMP)

– Periodically looks for updated event range file from Yoda and updates server
• Final heartbeat sent when all event ranges are processed

Alpha testing

8

Event Service on HPCs (2/2)
Alpha testing

9

PanDA@ALCF

10

• Mira is not x86 compatible machine:

– Focus on standalone applications: Alpgen, Sherpa

• Integration with PanDA

– RunJobMira class development in progress

– Pilot will submit jobs to ARGO/Balsam and receive
status info, then finally the output dataset

• Backfill studies are progressing, have filled 2/3
of Mira with Alpgen in backfill.

New trends. Data management

• Real BigData: special policy for data organization
required, starting from understanding of new
limitations ;-)

• Single HPC job can use
– Dozens of Tb of transient disk space
– Up to hundreds of Gb of transient data during

execution
– Possibility of huge output

• Special treatments for IO, starting from Pilot
itself

• Change POSIX ‘ls *’ to platform oriented ‘lfs find’ etc.
• Optimization of cleanup functions

11

12

Hey, why only 350G?! I would like to have 2-5Tb
 limit for working directory on Titan! ;-)

Current AGIS UI limit on pilot’s sandbox size

New trends. Data management

• Proposed use of FTS as data transfer tool at OLCF

13

New trends. Data management

• Why (Web)FTS?

– Reliable file transfers between Grid and Cloud
endpoints

– Modular multi-protocol support

• SRM, GridFTP, HTTP/WebDAV and XROOT

• Can relay file transfers between endpoints with
different protocols

– Powerful service to manage transfers with web
interface

14

New trends. Software installation

CVMFS & rsync doesn’t work well for Titan (at least for the
moment), but nothing new under the sun.

15

New trends. Software installation

• Installation should be formed as special job in
PanDA

• Dedicated PanDA queue (install queue) should
be used for this type of jobs, to avoid
execution on CN

• Processing of this type of jobs should be done
on login nodes (like regular grid job),
execution backend will be known from queue
parameter

16

New trends. Flexible tactics.

• ‘Backfill’ is great opportunity… unfortunately it’s not
always in place or job's requirements are not fitted for
this type of treatment, and regular HPC submission can
be more efficient.
– Adaptive algorithm for covering this issue in development

• In ‘backfill mode’ is not possible to predict how many
cores/nodes will be involved in processing. For some
workflows it’s important to have this information for
proper adjustment of parameters in next submission.
– This information can be provided to PanDA as soon as job

execution started.

17

Conclusion

• OLCF and NERSC were integrated with PanDA using common pilot
architecture (differences only to account for different site policies)
– ALCF will use the same architecture

• Many standalone workloads tested
– Alpgen, MadGraph, Powheg, Pythia, Geant4, Root
– Production scale EvGen runs at ALCF and OLCF

• Significant progress with ATLAS SW on x86 compatible HPC machines
(Titan, Hopper, Edison).
– ATLAS releases installation via pacman
– AthenaMP, Reco.trf tested

• Next steps:
– Tests with multiple simultaneously Pilots
– Improving of algorithm for resource grabbing
– Integration with production system

18

Acknowledgments

• Kaushik De

• Vakhtang Tsulaia

• Paul Nilsson & Wen Guan

• Andrey Kiryanov (FTS Team)

19

OLCF. Payloads
(Sergey Panitkin (BNL))

20

