

Caching FAX accesses

Ilija Vukotic

ADC TIM - Chicago October 28, 2014

Caching – why and where?

- Straight Tier3
 - Most of the disk space is devoted to input data. The input data is almost always from downloaded from the grid
 - A lot of stale data
 - Tedious cleanups (mails asking people to clean up)
 - Different file paths
 - Have to worry about the data sizes
- Tier3 with a nearby Tier2 or Tier1
 - Users advised to DaTRI data to a localgroupdisk and use it from there. That solves all the problems above but it bloats the localgroupdisk.

Caching – why and where?

Tier2

- Most of the jobs accessing FAX data are overflown. These already come from the optimal place (thanks to cost matrix).
- Any cache would have a very small hit rate.
- DDM Endpoint-less Tier2 but with cache disk
 - Like UCL or a cloud based Tier2
 - Would have a very small hit rate unless …
 - We specialize it:
 - Only certain physics group jobs?
 - Only certain type of jobs?
 - Only high priority stuff?

XRootD caching proxy

- Alja & Matevz caching plugin
 - Presented at the Federated Storage Workshop @SLAC*
 - Tested to hundreds of concurrent reads/writes good enough to saturate a 100Gb/s link

Basics:

- File level (pre-fetching)
- Sub-file level caching
- Caches blocks of configurable size.
- Supports vector reads
- Purging based on High/Low watermark
- But never tried in production environment

^{*}https://indico.fnal.gov/getFile.py/access?contribId=38&sessionId=17&resId=0&materialId=slides&confId=7207

Configuration

FAX (MWT2 endpoint)

Caching server

serving /atlas/rucio

Original servers:

- 113 TB HDDs in 5 Dell shelves RAID 6
- Native xrootd
- Also used as interactive nodes

Caching proxy:

- 28TB HDD in 2 shelves RAID 6
- 2 x 160GB SDD in RAID 0, fronting HDDs
- Custom kernel + rebuilt tools from SL7 (bcache)

Straightforward configuration. (xrootd 4.0.4) Zero downtime.

Accessed by Tier3 users

Server 1

serving /atlas/uct3

Server 2

serving /atlas/uct3

Server 3

serving /atlas/uct3

Performance

- One of the xAOD analysis tutorial lessons*
 - 200 input files (all available at MWT2)
 - Simple cut and plot example
 - rcSetup Base, 2.0.14
 - ROOT 5.34.18, no TTC

Empty cache	1:25	
Full file cached	1:07	
Sub file	0:29	

^{*} https://ci-connect.atlassian.net/wiki/display/AC/xAOD+analysis+tutorial

Conclusion

- For Tier3 storage XRootD cache solves most of the issues
 - Admin friendly
 - Simple deployment
 - High performance
 - 30/70 storage/cache split and sub-file level caching recommended
 - User friendly
 - Provides more effective storage (stale files, files of long gone users, ...)
 - Sub-file level caching can be seen as a one free skim/slim stage for everybody
- T2 usage still to be investigated upon longer Tier3 testing

