From Physics to Daily Life:

Data Management Challenges in Paediatric Information Systems

Professor Richard McClatchey

UWE, Bristol UK
Paediatric Information Characteristics I

- Huge amounts
 - Number of objects (images, datasets, test results etc.)
 - Size of objects (sets MR images can be 10^{10}–100Mb)

- Extreme heterogeneity
 - Biological granularity (genetics \rightarrow epidemiological: vertical integration)
 - Distributed information sources (horizontal integration)
 - Semantic information models (data + meaning)
 - Information modalities (many forms of imaging)
 - Legacy information

- Uncertainty
 - Measurement errors
 - Text interpretation
 - Misclassification
Paediatric Information Characteristics II

- Continuous evolution
 - Child growth
 - Medical advances in disease understanding
 - Medical protocols
- Rapid generation and ingest
 - Human body and environment sensors
 - Large numbers of patient exams
Motivation for Health-e-Child

• Clinical demand for integration and exploitation of heterogeneous biomedical information
 – vertical dimension – multiple data sources
 – horizontal dimension – multiple sites

• Need for generic and scalable solutions
 – integrate traditional and emerging sources
 – offer decision support in diagnosis, therapy and follow-up
 – provide complex integrated disease models
 – ubiquitous access to knowledge repositories in clinical routine
 – connect stakeholders in clinical research

• Specific Needs in Paediatrics
 – Many medical disorders in children are little understood and some diseases are rare
 – Incentives to invest in research are low
Health-e-Child Project Structure & Partners

Framework FP6 Integrated Project (IP)
- Sponsor: European Commission
- Jan 2006 until Apr 2010

Coordinator – Siemens AG
- Siemens – H IM IKM ST
 - Project Coordinator: Jörg Freund
 - Governing Board Head: Dorin Comaniciu

Clinical Institutions
- Giannina Gaslini Hospital, Genoa, Italy
- Great Ormond Street Children’s Hospital, London, UK
- Assistance Publique Hopitaux de Paris, Necker Hospital, Paris, France
- Ospedale Bambino Gesù, Rome, Italy

Other Partners: Lynkeus SRL (Rome, Italy), European Organisation for Nuclear Research CERN (Geneva, Switzerland), Maat G Knowledge (Toledo, Spain), University of the West of England (Bristol, UK), University of Athens (Athens, Greece), Universita' degli Studi di Genova (Genoa, Italy), National Institute for Information and Automation Research (Sophia Antipolis, France), European Genetics Foundation (Bologna, Italy), Aktsiaselts ASPER BIOTECH (Tartu, Estonia), Gerolamo Gaslini Foundation (Genoa, Italy)
Health-e-Child at a Glance

- Establish multi-site, vertical, and longitudinal integration of data, information and knowledge
- Develop a GRID based platform, supported by robust search, optimisation and matching
- Build enabling tools and services that improve patient care
- Two main use case scenarios
 - “Aiding the Clinician in Decision Making”
 - “Clinical Studies”
Objectives of Health-e-Child

- Build enabling tools & services that improve the quality of care and reduce cost via:
 - Integrated disease models
 - Database-guided decision support systems
 - Cross modality information fusion and data mining for knowledge discovery
Focus on Paediatric Diseases

- Three Paediatric Diseases with at least partly unknown cause, classification and/or treatment outcomes
 - Heart diseases (*Right Ventricular Overload, Cardiomyopathy*)
 - Inflammatory diseases (*Juvenile Idiopathic Arthritis*)
 - Brain tumours (*Gliomas*)

- Many Clinical Departments
 - Cardiology
 - Rheumatology
 - (Neuro-)Oncology
 - Radiology
 - Lab (Genetics, Proteomics)
 - Administration, IT

- Main Modalities / Data Sources
 - Imaging (MR, US/echocardiography, CT, x-ray)
 - Clinical (Patient information, Lab results etc)
 - Genetics & Proteomics
Example Disease: Right Ventricular Overload

Clinical Data
- Demographic, history & familial
- Lifestyle
- Clinical notes
- ECG

Imaging Data
- 2D/3D Echo
- Tissue Doppler
- MRI

Genetic Data
- Karyotyping
- Array-CGH

Clinical Features
- prolonged PR interval in electrocardiogram
- systolic ejection murmur on auscultation

Anatomical Features
- Hyperkinetic RV muscle
- Increased RV-LV ratio
- Ventricular septum defect
- Thickening (hypertrophy) of the RV muscle

Genetic Features
- candidates for gene mutations are e.g. 4p13-q12, 6p21.3, 1p31-p21, 3p25, 6q21-q23.2, 5q34

Decision Support
- prediction of type and timing of treatment
- classification of RV overload
- retrieval of similar cases

Knowledge Discovery
- classification of subtypes
- genotype/phenotype correlation

training and specific patient data
Integrated Data Modelling

- Modelling axes
 - disease, vertical levels, medical process, source/modality, temporal

- Requirements-driven
 - clinical protocols, user requirements
 - basis for data management in the platform
 - data access for applications

- Integration
 - Views / queries along multiple axes

- Temporal (Time, Growth)

- Disease Related Axes

- Patient characteristics

- Other Aspects

- Multidimensional information repository

- Domain Knowledge
 - what is known?

- Study Information
 - what am I looking for?

- Patient Data
 - What does the patient exhibit, signs and symptoms?

- Result
Details are outlined in: ‘From Physics to Daily Life: Data Management Challenges in Paediatric Information Systems’ by Prof Richard McClatchey
Health-e-Child Platform Overview

- Cardiology
 - Right Ventricular Overload Cardiomyopathy
- NeuroOncology
 - Brain Tumors / Gliomas
- Rheumatology
 - Juvenile Idiopathic Arthritis

Gateway
- Ontological Layer
- Query Processing
- Data Management

Grid – EGEE gLite
- IGG
- GOSH
- NECKER
- OPBG
- JHU
Use of Grids for Biomedical Sciences

- Life Sciences
 - To address complexity of databases interoperability (e.g. Embrace)
 - To ease the design of data analysis workflow (e.g. MyGrid)

- Medical Research
 - To store and manipulate large cohorts of medical images (e.g. Mammogrid, neuGRID/N4U)
 - To bring together and to correlate patient medical and biological data (e.g. ACGT, Health-e-Child, @Neurist)

- Drug Discovery
 - First step of a full in silico drug discovery process successfully proven (e.g. Wisdom)
 - To reduce time and save money in the drug discovery process
Innovation Exchange

Grid-Enabled Platform for Simulations in Paediatric Cardiology
Toward the Personalized Virtual Child Heart

Worldwide e-Infrastructure for Computational Neurosciences

Worldwide e-Infrastructure for Computational Neurosciences

Digital Repository Infrastructure for Breast Cancer Research

Grid-enabled Sentinel Network for Cancer Surveillance

Self-Adaptive very Large Distributed Systems

Sim-e-Child

neuGRID

outGRID

MammoGrid+

Sentinel

SALTY
Summary

• The importance of IT will increase the more personalized medicine becomes reality
 • to automatically process and analyze the data (genetics, proteomics but also imaging)
 • to provide access to large annotated patient databases

• Health-e-Child has developed a multi-site system infrastructure supporting vertical data integration and offering both generic and specific tools
 • to discover new knowledge
 • to aid in decision making

• These are the first steps in a long journey towards support for effective, personalized healthcare in the 21st century.