Higgs Activities in the FCC-hh

Roberto Contino⁽¹⁾, Heather M. Gray⁽²⁾, Michelangelo Mangano⁽²⁾

- (1) EPFL, CERN
- (2) CERN

Quick Reminder: What is the FCC?

Future-Circular-Colliders

- Goal: Build a 80-100km tunnel to host new collider(s)
- pp-collider (FCC-hh) defining infrastructure requirements
 - 8.3 Tesla (LHC dipoles) ⇒ √s=42 TeV pp in 100km (NbTi)
 - 16 Tesla $\Rightarrow \sqrt{s}=100 \text{ TeV pp in } 100\text{km (NbSn3)}$
 - 20 Tesla $\Rightarrow \sqrt{s}=100\text{TeV}$ pp in 80km (HTS)
- e+e- collider (FCC-ee, old TLep) as potential intermediate step
- p-e option (FCC-he)

FCC-hh structure

FCC hh workshop: http://indico.cern.ch/event/304759/other-view?view=standard

Timeline

Topics Higgs & EW Symmetry Breaking

- Precision studies of Higgs Properties
- Rare Higgs production and decays
- High-mass WW scattering
- high-mass HH production
- Additional BSM Higgs bosons: discovery reach and precision physics program
- New handles on the study of non-SM EWSM dynamics
- New ideas!

Precision Higgs Studies

- Extrapolation of basic Higgs channels
 - 'A Higgs factory'
 - $\sigma_{ggF} = 740 \text{ pb}$
 - cf. ~800 pb for ttbar at LHC
- VBF provide input for detector η coverage
- Theoretical errors are key, including uncertainties on EFT treatment

Process	$\sigma^{ m NNLO}$ [pb]	Scale[%]	PDF+ α_s [%]	EFT[%]	Total [%]
$gg \to H$	788.6	+7.1 - 6.1	+8.3 - 8.0	$\left(\pm 5\right)$	+20 -19
$qq' \to Hqq$	68.74	+2.2 - 2.1	+3.1 -3.2	0	+5.3 - 5.2
$q\bar{q}' o WH$	15.88	+0.7 -0.1	+5.0 -4.7	0	+5.7 - 4.8
$q\bar{q} o ZH$	11.28	+1.8 -1.7	+4.5 - 4.3	0	+6.3 -6.0

Baglio+Quevillon+Djouadi

Example, ttH at large pt

- S/B > I
- 10 M evts at 10ab⁻¹ w. ptmin=200 GeV, before further cuts

Measure ttH/ttZ

Hua-Sheng Shao, Michelangelo Mangano

To the extent that the qqbar \rightarrow tt Z/H contributions are subdominant:

- Identical production dynamics:
 - o correlated QCD corrections, correlated scale dependence
 - o correlated α_S systematics
- m_Z~m_H ⇒ almost identical kinematic boundaries:
 - o correlated PDF systematics
 - o correlated m_{top} systematics

For a given y_{top} , we expect $\sigma(ttH)/\sigma(ttZ)$ to be predicted with great precision

Theoretical Uncertainties

MSTW2008NLO, μ_0	(CÉRN)		
	ttH (pb)	ttZ (pb)	ttH/ttZ
NLO QCD	33.9 [+7.06% _{-8.29%}]Scale [+0.941% _{-1.26%}]PDF	57.9 [+8.93%9.46%]Scale [+0.901%1.20%]PDF	0.585 [+1.29%-2.02%]Scale [+0.0526%-0.0758%]PDF

HH Production

 Measuring HH production at the LHC will be very difficult

 $b \overline{b} \gamma \gamma$: Prospects for 14 TeV dire...

process	ATLAS		CMS
SM HH→bbγγ	8.4± 0.1		9.9
bbyy	9.7 ± 1.5	γγ+jets	8.5
ссүү, bbүj, bbjj, jjүү	24.1 ± 2.2	γ+jets, jets	7.4
top background	3.4 ± 2.2		1.1
ttH(yy)	6.1 ± 0.5		1.5
Z(bb)H(γγ)	2.7 ± 0.1		3.3
bbH(yy)	1.2 ± 0.1		0.8
Total background	47.1 ± 3.5		22.6
S/√B (barrel+endcap)	1.2		
S/√B (split barrel and endcap)	1.3		

Michael Spannowsky

- The energy and luminosity of the FCC make it far more accessible
 - Even potentially non-traditional channels like bbµµ
- Also ttHH, VBF HH, etc.
- Clear benchmark for FCC-hh

Decay channel	Branching ratio	Uncr. (\pm)
$bar{b}bar{b}$	$3.33 \cdot 10^{-01}$	$1.55 \cdot 10^{-02}$
$ au au bar{b}$	$3.65 \cdot 10^{-02}$	$2.40\cdot10^{-03}$
$W^+(\to l\nu)W^-(\to l\nu)b\bar{b}$	$5.47 \cdot 10^{-03}$	$2.97\cdot10^{-04}$
$\tau \tau \tau \tau$	$3.99 \cdot 10^{-03}$	$3.22\cdot10^{-04}$
$\gamma\gamma bar{b}$	$1.32 \cdot 10^{-03}$	$7.88\cdot10^{-05}$
$W^+(\to l\nu)W^-(\to l\nu)\tau\tau$	$5.99 \cdot 10^{-04}$	$4.28\cdot10^{-05}$
$\gamma\gamma au au$	$1.44 \cdot 10^{-04}$	$1.09\cdot10^{-05}$
$b ar{b} \mu^+ \mu^-$	$1.26 \cdot 10^{-04}$	$8.65 \cdot 10^{-06}$
$W^+(\to l\nu)W^-(\to l\nu)W^+(\to l\nu)W^-(\to l\nu)$	$8.99 \cdot 10^{-05}$	$5.47\cdot10^{-06}$
$Z(\rightarrow l^+l^-)Z(\rightarrow l^+l^-)b\bar{b}$	$7.04 \cdot 10^{-05}$	$3.82 \cdot 10^{-06}$

VBF HH Production

- VBF production provides unique information on the HHVV coupling
 - Can be substantially enhanced in scenarios where EW symmetry breaking is broken by strong dynamics
- Need large η coverage
- FCC would provide powerful constraints on non-SM couplings

Conclusion

- The FCC-hh Higgs program is an exciting playground for the future
- Currently exploring the physics potential of such a machine
- Next: determine a few selected benchmark studies to provide input into the machine and detector design
- The work so far has largely driven by theorists
 - Excellent opportunity for experimentalists to participate
 - Feel free to contact us with ideas!
- Not so often that we get to dream what physics might be possible and how we might design a detector
- Higgs and BSM @ 100 TeV workshop, CERN, March 11-13 2015
 - https://indico.cern.ch/event/352868/
- FCC week 2015, Washington DC, 23-27 March 2015
 - http://indico.cern.ch/event/340703/