$b\bar{b}H$ report and plans (theory)

Marius Wiesemann

University of Zürich

co-conveners:

Matthew Beckingham, Alexandre Nikitenko, Michael Spira

The 8th Workshop of LHC Higgs Cross Section Working Group CERN (Switzerland), 22-24 January, 2015

Outline

1. Motivation

- 2. Schemes
- 3. Cross Section
- 4. Current status and ongoing studies
- 5. Plans and Outlook

SM vs. MSSM Higgs production

- ► SM:
 - gluon fusion by far dominant
 - *bbH* sizeable only with *b*-tagging

SM vs. MSSM Higgs production

- gluon fusion by far dominant
- *bbH* sizeable only with *b*-tagging

- ► 3 neutral Higgs: *h*, *H* and *A*
- y_b/y_t enhanced by tan β
- h: constrained to be SM-like
- $b\bar{b}H/A$ dominant for large tan β

Associated $H(b\bar{b})$ production

4-flavour scheme

- massive b's
- potentially large logs $\ln(m_b/Q)$
- power terms $(m_b/Q)^n$
- \blacktriangleright involved 2 \rightarrow 3 at LO
- 2 exclusive b's at LO
- b(-tag) well defined

5-flavour scheme

- massless b's
- resummation into b-PDFs
- ▶ —
- simple $2 \rightarrow 1$ at LO
- exclusive b's at higher orders
- b part of light jets

4-flavour scheme

 inclusive (exclusive) up to NLO

[Dittmaier, Krämer, Spira '04]

[Dawson, Jackson, Reina, Wackeroth '04]

exclusive NLO+PS

[MW, Frederix, Frixione, Hirschi,

Maltoni, Torrielli '14],

[Sherpa: Krauss, Schönherr... work

in progress]

5-flavour scheme

 \blacktriangleright inclusive up to NNLO

[Harlander, Kilgore '03]

► towards N³LO

[Ahmed, Rana, Ravindran '14], [Ahmed, Mandal, Rana, Ravindran '14], [Gehrmann, Kara '14]

exclusive H+b at NLO

[Campbell, Ellis, Maltoni, Willenbrock '03]

• exclusive H+n-jet (n = 0/1/2)

[Harlander, Ozeren, MW '10],[Harlander, MW '11]

exclusive up to NNLO

[Buehler, Herzog, Lazopoulos, Mueller '12]

- *p_T* resummation
 NLO+NLL [Belyaev, Nadolsky, Yuan '06]
 NNLO+NNLL [Harlander, Tripathi, MW '14]
- exclusive NLO+PS

- ▶ y_b y_t-term enters at NLO:
 - interference with (contamination from) gluon fusion
 - no double counting with gluon fusion cross section!
- y_t^2 -term enters at NNLO:
 - part of gluon fusion cross section
 - sizable in SM $\sim 40\%$ (LO large uncertainties)
 - e.g., with MG5@LO in 4FS HEFT; agreement with full theory

4FS vs. 5FS: Inclusive cross section

4FS NLO:

[Dittmaier, Krämer, Spira '04] [Dawson, Jackson, Reina, Wackeroth '04] grids $m_{\phi} = 80 - 1000$ GeV for y_b^2 and $y_b y_t$ produced by M. Spira ($y_b y_t$ negligible for large tan β)

5FS NNLO:

[Harlander, Kilgore '03]

grids $m_{\phi}=80-1000$ GeV for y_b^2 and produced with SusHi

[Harlander, Liebler, Mantler '13]

MSSM: Δ_b approximation and resummation through y_b -reweighting (captures dominant effects)[Dawson, Jackson, Reina, Wackeroth '05],

[Dittmaier, Häfliger, Krämer, Spira, Walser '14]

4FS vs. 5FS: Santander matching

$$\sigma = rac{\sigma^{4\mathsf{FS}}+w\,\sigma^{4\mathsf{FS}}}{1+w}$$
, $w = \ln(m_{\phi}/m_b) - 2$

[Harlander, Krämer, Schumacher '11]

Alternative matching scheme: [Bonvini, Papanastasiou, Tackmann] work in progress...

$b\bar{b}H$ -Induced Cross-Section: fix $m_H = 125$ GeV, vary m_b

 perform a strict expansion to O(α^s_s) at level of C_{ij} ⊗ M_{ij} to ensure resummation switched off continuously!

- very good transition between fixed-order ("4F") and resummation ("5F") regions

Tools for exclusive $b\bar{b}H$ cross section and distributions

- Higgs distributions (inclusive over b's)
 - 5FS y^H at NNLO: private code

[Bühler, Herzog, Lazopoulos, Müller '12]

- 5FS $p_T(H)$ at NNLO+NNLL: private code by M. Wiesemann [Harlander, Tripathi, MW '14]
- 4FS at NLO: private codes by M. Spira and M. Krämer [Dittmaier, Krämer, Spira '04]
- 4FS at NLO+PS: MG5_aMC with $y_b^{\overline{MS}}$

[MW, Frederix, Frixione, Hirschi, Maltoni, Torielli '14]

- exclusive cross section with b-tagging
 - 4FS at NLO+PS: MG5_aMC with $y_b^{\overline{MS}}$ (both y_b^2 and $y_b y_t$) [MW, Frederix, Frixione, Hirschi, Maltoni, Torielli '14] process folder publicly available on:

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/bbH

- work in progress: new developments in Sherpa

Exclusive $b\bar{b}H$ cross section

SM NLO+PS with Pythia8; $\mu_F = \mu_R = H_T/4$; shower scale according to [MW, Frederix, Frixione, Hirschi, Maltoni, Torielli '14]

- significantly reduced residual uncertainty at NLO
- $y_b y_t$ always $\sim -10\%$ with large uncertainty (effectively LO)
- ▶ b-tag reduces cross section by factor of 3 4
- second b-tag by additional factor of 10

		NLO		LO
$\sigma[{\sf pb}]$	y_b^2	Уь Уt	$y_b^2 + y_b y_t$	y_b^2
inclusive	$0.448^{+19.8\%}_{-20.8\%}$	$-0.0365^{+35.5\%}_{-62.8\%}$	$0.411^{+24.6\%}_{-28.4\%}$	$0.478^{+59.0\%}_{-34.6\%}$
$\geq 1 j_b$	$0.133^{+16.7\%}_{-17.3\%}$	$-0.0148^{+35.0\%}_{-60.1\%}$	$0.118^{+23.5\%}_{-26.8\%}$	$0.150^{+55.9\%}_{-32.8\%}$
$\geq 2j_b$	$0.0133^{+13.7\%}_{-16.0\%}$	$-0.00147^{+34.3\%}_{-58.8\%}$	$0.0118^{+20.0\%}_{-25.1\%}$	$0.0168^{+54.4\%}_{-32.7\%}$

m_{BB} : y_b^2 vs. $y_b y_t$ (4FS)

m_{BB} : y_b^2 vs. $y_b y_t$ (4FS)

y_B: 4FS vs. 5FS

p_T^H : 4FS vs. 5FS NNLO+NNLL

[MW, Frederix, Frixione, Hirschi, Maltoni, Torielli '14], [Harlander, Tripathi, MW '14]

analytic resummation: $\mu_F = \mu_R = m_T/4$ NLO+PS: $\mu_F = \mu_R = H_T/4$

New developments in Sherpa

very preliminary so far:

[Krauss, Schönherr]

4FS:

- 0-jet NLO+PS merged with 2-jet LO
- scales: $\alpha_s^2(\mu_R) = \alpha_s(m_h) \alpha_s(t)$; $\mu_F = \mu_Q = m_T(h)$
- on-shell yb
- virtuals from OpenLoops

5**FS**:

- merged 0,1,2,3-jet LO
- $\mu_F = \mu_R = \mu_Q = m_h$
- on-shell yb
- virtuals from OpenLoops

work in progress ...

very preliminary results

- $p_{\perp}(hbb)$ is somewhat softer in 5F
- hardly any impact of choice of scale in $g \rightarrow bb$ splitting
 - \rightarrow most likely because leading b-jets couple to Higgs
 - \rightarrow hardly any contribution from soft $g \rightarrow bb$ splittings

very preliminary results

- good agreement for $p_{\perp}(1 \text{st } b\text{-jet})$
- *p*_⊥(2nd *b*-jet) is somewhat softer in 5F
- hardly any impact of choice of scale in $g \rightarrow bb$ splitting

Summary: current recommended tools for $b\bar{b}H$

- inclusive cross section
 - 4FS at NLO: private code by M. Spira, MG5_aMC with y_b^{MS}
 - 5FS at NNLO: SusHi (bbh@nnlo)
- Higgs distributions (inclusive over b's)
 - 5FS y^H at NNLO: private code [Bühler, Herzog, Lazopoulos, Müller '12]
 - 5FS $p_T(H)$ at NNLO+NNLL: private code by M. Wiesemann
 - 4FS at NLO: private code by M. Spira [Dittmaier, Krämer, Spira '04]
 - 4FS at NLO+PS: MG5_aMC with $y_b^{\overline{MS}}$
- exclusive cross section with *b*-tagging
 - 4FS at NLO+PS: MG5_aMC with y_b^{MS}

disclaimer: will be updated once ongoing studies are finalized (e.g. Sherpa)

Plans for YR4

total cross section:

- comparison: 4FS/5FS combination vs. existing results
- update recommendation (if required): scales, inputs (e.g. y_b)
- exclusive cross sections:
 - having (at least) two MC's (MG5, Sherpa) beyond LO
 - MC and 4FS vs 5FS comparison
 - validation with similar processes ($b\bar{b}Z$, single top)
 - recommendation: scales, inputs (consistent with total)
 - uncertainty estimation (and recommendation):
 - o perturbative (μ_R , μ_F)
 - o shower matching (Q)
 - o merging (Sherpa)
 - studies for larger Higgs masses (so far mostly 125 GeV)
 - gluon fusion contribution

BackUp

bbH **SETUP TO NLO**

$$\begin{split} \sigma &= C_{gg}^{(2)} f_g f_g + C_{bg}^{(1)} f_b f_g + C_{b\bar{b}}^{(0)} f_b f_b + q\bar{q} \text{-channel} \\ &+ C_{gg}^{(3)} f_g f_g + C_{bg}^{(2)} f_b f_g + C_{b\bar{b}}^{(2)} f_b f_b + q\bar{q}/qg/bq \text{-channels} \\ &\sim \alpha_s^2 \end{split}$$

LO

NI O

Construct NLO Coefficient functions

- $C_{gg}^{(3)}, C_{q\bar{q}}^{(2)}, C_{qg}^{(2)}$ MADGRAPH5_AMC@NLO [Alwall et al.]
- $C_{bg}^{(2)}, C_{b\bar{b}}^{(1)}, C_{bq}^{(2)}$ [Harlander, Kilgore]
- + subtractions (in-house)

NLO mass-matching & PDFs: constructed from

- $\mathcal{M}^{(2)}_{ij}(\mu_m)$ [Buza et al.]
- implement in APFEL [Bertone et al.] for general μ_m
- create LHAPDF grid files for each m_b and μ_m (initial conditions from available PDFs)

$$\begin{array}{|c|c|} LO & \mathcal{M}_{ij}^{(1)}(\mu_m) \\ \hline NLO & \mathcal{M}_{ij}^{(2)}(\mu_m) \end{array}$$

 $C_{gg}^{(2)}, C_{q\bar{q}}^{(2)}, C_{bg}^{(1)}, C_{b\bar{b}}^{(0)}$

 $C_{gg}^{(3)}, C_{q\bar{q}}^{(2)}, C_{dg}^{(2)}, C_{bg}^{(2)}, C_{b\bar{q}}^{(1)}, C_{b\bar{q}}^{(2)}$

shower scale in MG5_aMC

- shower scale Q event-wise chosen from distribution
- interval of distribution determined from inputs (α , f_1 , f_2):

 $\alpha f_1 \sqrt{s_0} \leq Q \leq \alpha f_2 \sqrt{s_0}, \qquad s_0 : LO \text{ center of mass energy}$

default values: $\alpha = 1$, $f_1 = 0.1$, $f_2 = 1$

- ▶ peaked at $Q_{\text{peak}} \sim \alpha (f_1 + f_2) \sqrt{\langle s_0 \rangle}/2$
- for bbH in 4FS follows:

4FS: choosing the shower scale

Q event-wise from a distribution peaked at $Q_{\text{peak}} \sim \alpha(f_1 + f_2)\sqrt{\langle s_0 \rangle}/2$ in an interval: $\alpha f_1 \sqrt{s_0} \leq Q \leq \alpha f_2 \sqrt{s_0}$, $f_1 = 0.1$, $f_2 = 1$, s_0 : LO c.m.e.

4FS: choosing the shower scale

[MW, Frederix, Frixione, Hirschi, Maltoni, Torielli '14]

 $egin{aligned} lpha &= 1 & \widehat{=} \; Q_{\mathsf{peak}} \sim \mathsf{180GeV} \ lpha &= 1/2 \widehat{=} \; Q_{\mathsf{peak}} \sim \mathsf{90GeV} \ lpha &= 1/4 \widehat{=} \; Q_{\mathsf{peak}} \sim \mathsf{45GeV} \end{aligned}$

4FS: choosing the shower scale

[MW, Frederix, Frixione, Hirschi, Maltoni, Torielli '14]

p_T^H in 5FS: NLO+PS vs. analytic resummation

[MW, Frederix, Frixione, Hirschi, Maltoni, Torielli '14]

analytic resummation: $\mu_F = \mu_R = m_T/4$ NLO+PS: $\mu_F = \mu_R = H_T/4$

Parton shower starting conditions for $pp \rightarrow Xbb$

One way of addressing the above issue is through clustering in CKKW approach. Reduce

 \rightarrow starting scale needs to be of the order of t \rightarrow set starting scale on $2\rightarrow 2$ to $\mu_Q=m_\perp(h)$ in the following also use for μ_R the solution of $\alpha_s^2(\mu_R)=\alpha_s(m_h)\alpha_s(t)$ and $\mu_F=\mu_Q$