ttH / tH Experimental Status

Stefan Guindon¹, Chris Neu², Stefano Pozzorini³, Laura Reina⁴ on behalf of the ttH LHC Higgs XS WG

¹University at Albany, State University of New York ²University of Virginia ³Universität Zürich ⁴Florida State University

Overview of the ttH WG I

- Short bi-weekly reports from the different decay channels
 - Channels have very different signatures / experimental approaches
 - Meetings covering ttH signal, important backgrounds (tt+bb, ttV, etc)
 - Background modelling is very important for ttH/tH search
 - Still to come: meetings on tH signal and background MC treatments
- https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGTTH
 - Summaries from meetings linked
- Reports from experiments (both CMS and ATLAS)
 - Highlight important issues from each experiment
 - Comparison of treatment of uncertainties
 - Identify room for improvement towards Run-2 with priority list
- Arranged a group of experimentalists from both experiments to work on open issues which have risen from discussions

Overview of the ttH WG II

- ttH smallest cross section of four Higgs production mechanisms
 - $\sigma(t\bar{t}H)$ @ 8 TeV = 130 fb $\to \sim$ 2600 events with 20 fb⁻¹
- ttH suffers from very large background due to tt+X
- Ratio of ttH to tt significantly increases with higher luminosity
- Very different signatures and analysis related issues
- Topical meetings to address each individually

Higgs Decay	Branching (%)
$H \rightarrow bb$	58%
H -> WW / ZZ / TT	30%
$H \rightarrow \gamma \gamma$	0.2%

- Largest branching fraction, large background from tt+HF
- Multilepton final states, small backgrounds from tt̄+V,
 VZ+HF and tt̄+jets (w/ fake leptons)
- Small branching fraction, clean signature

ttH Signal Modelling

- Talks on ttH signal modelling
 - CMS: LO Pythia6.4.26 / ATLAS: NLO PowHel+Pythia8
 - In both experiments, this is not the leading source of uncertainty for Run-I
 - Might be larger issue with higher luminosity
 - Need to assess a way of uniform theory systematics / scale choices
- Study of modelling of different generators
 - Studies of modelling from MadGraph5_aMC@NLO+MadSpin with nominal samples
 - Reasonable agreement found between two generators
 - Need to include Sherpa and Powheg

CMS: NLO prefers more jets

ttH(bb): tt+jets background I

- Largest source of uncertainty on the ttH(bb) analysis is tt+jets modelling
 - tt+bb and tt+cc normalization + top/ttbar pT re-weighting
- Treatment of tt+jets slightly different between ATLAS (NLO+PS) and CMS (LO ME+PS)
 - CMS treats tt+b also separately in fitting procedure
 - Ad-hoc treatment of normalization uncertainties for tt+bb/b and tt+cc (50 %)
 - Clear improvement can be made here

• Fitted regions in ttH(bb) single lepton:

- Both experiments re-weight from differential top measurements (top pT)
 - ATLAS also re-weights based on ttbar pT spectrum
 - Thoroughly discussed experimental treatment and associated systematics

ttH(bb): tt+jets background II

- CMS re-weights top pT from top differential cross section measurement
- ATLAS does a sequential ttbar pT x top pT re-weighting

 Data/Prediction agreement significantly improves

 Re-weightings of top pT agree very well between two collaborations

ttH(bb): tt+jets background III

 Signal overwhelmed by tt+bb background in most signal-like regions

- Exploit kinematic information to separate ttH
 from tt+bb in both analyses -> modelling crucial
- General agreement in need to move to NLO generators for Run-II.
 - Better theoretical modelling descriptions for tt+jets.
- Experimental input is required:
 - Do we need tt+bb at NLO in 4F scheme? How to merge with ttbar+jets?
 - Does tt+jets at NLO in 5F scheme do a good enough job at modelling b-kinematics?

ttH(bb): tt+bb Background Studies

 b-kinematics seem to be similarly modelled - not yet conclusive

- Studies on-going for tt+bb for 4F vs 5F scheme
- Sherpa+OpenLoops NLO 4F tt+bb compared with NLO+PS and Sherpa MEPS@NLO
- Differences in relative contributions of different categories of tt+b(b) HF

- Need to include PowHel tt+bb samples, Madgraph5_aMC@NLO with different merging schemes (FxFx and UNLOPS)
- EW contributions might be significant at tree-level -> should be checked

$ttH(\gamma\gamma)$

- Analysis approaches are different between two experiments:
 - ATLAS uses sideband region to understand tt+γγ (less MC dependent), large contribution of non-ttH production mechanisms
 - CMS aims to reduce non-ttH production, however tt+γγ background modelling is more important
- Analyses in Run-I did not need background MC descriptions
 - Background estimated from sideband regions (good to check with MC in Run-II)
 - Statistically limited analysis (CMS: ~ 1 % due to systematics)
- ATLAS H+HF uncertainties very conservative
 - Motivated by tt+HF (ggF+HF) and W+b (VH+HF) <— 100 % uncertainty
- For Run-II: beneficial to have MC modelling at NLO+PS of tt+γγ
 - PowHel collaboration: ttH(H->γγ), tt+1or2 γ at NLO+PS
 - Would like to have it publicly available
 - Significantly help model kinematic distributions for Run-II
 - Need to assess systematics from PS, hadronization effects, etc to clearly see benefit from MC predictions (still unclear how much MC will play a role)
 - Not just a ttH effort tHq and some BSM searches

ttH(Multilepton)

- The multilepton channel includes several final state signatures:
 - 2 same-sign leptons + b-jets
 - 3 leptons (with no resonant Z->II)+ b-jets
 - 4 leptons (other than H->ZZ->4l no resonant Z->ll)+ b-jets
- Data driven (fakes) and MC estimated backgrounds
- Run-I analyses heavily dependent on MC simulations
 - Variations of renormalization and factorization scales, as well as ME/PS threshold taken as systematic uncertainties
 - Largest background contributions include ttV and VZ+HF
 - Discussion of usefulness of uniform recommendation for theory uncertainty treatment
- CMS uses a multivariate technique: modelling important
 - Normalized to data in control regions
 - VZ+bb extrapolation from signal region to control region one of the limiting factors

• To-do list from experimental side:

- Need to quantify the need for multijet NLO simulations (ttV+jets and VV+jets) +heavy b
- Spin correlation important?
- Off-shell treatment of ttZ (Z-veto) —> full tt+dilepton simulation incl. off-shell Z/y^*

University at Albany, SUNY

ttH Systematics and Correlations

- Meeting to discuss treatment of systematics and correlations within the combination of each experiment
 - How we treat theory systematics between channels
 - Review similarities and differences between the collaborations

- In general, treatment quite similar
 - ttH analyses are quite different —> most systematics uncorrelated

University at Albany, SUNY

tH Modelling: Still to Come

• tH Meetings still to come: Jan 26th and Feb 2nd

- Experimental measurements of kT (coupling of top-Higgs)
 - CMS: tH(H->bb) with kT=-1 (constructive interference -> enhance tHq cross section)

- 5F (NLO 3b + LO 4b) vs 4F (NLO 3b and 4b)
- Validation with tWH channel MC

ATL-PHYS-PUB-2014-022

- 4F scheme predicts more and harder b-jets than 5F since the spectator b-quark at LO.
- In the NLO 4F calculation kinematics: NLO

Outlook from Experimental Side

- ttH LHC Higgs XS WG has been very busy
- Many talks from both experiments on a full range of topics
 - Discussions of ttH signal and background modelling
 - Largest sources of systematics for Run-I analyses
 - Identifying sources of improvement and where work is needed for Run-II
 - Brought together a group of experimentalists to study all the wonderful tools our theory collaborators have been working on!
 - Many studies currently on-going in various areas
- Look forward to continued discussion over the coming months!