$t\bar{t}H$ Theory Overview

Stefano Pozzorini

Zurich University

in collaboration with Stefan Guindon, Laura Reina, Chris Neu

 $8^{\rm th}$ Workshop of LHC Higgs Cross Section Working Group CERN, Geneva, 22 January 2015

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

- 1 $t\bar{t}H$ Signal
- 2 Backgrounds for $H \to b\bar{b}$
- (3) Backgrounds for $H \to \gamma \gamma$
- 4 Backgrounds for $H \rightarrow WW, ZZ, \tau\tau \rightarrow$ multi-leptons
- 5 Scale uncertainties in NLO matching & merging

Theory Challenges in $t\bar{t}H$ searches

Large multi-particle backgrounds ($t\bar{t}$ + jets, $t\bar{t}V$ + jets, $t\bar{t}\gamma\gamma$, VV+ jets)

- Key priority is precision for backgrounds
- ${\ensuremath{\, \circ }}$ NLO automation powerful but $2 \rightarrow 4$ CPU intensive

NLO matching & merging crucial

- various new methods (FxFx, MEPS@NLO, MINLO, UNLOPS,...)
- various automated tools (MG5_AMC@NLO, SHERPA, MINLO-POWHEG,...)

Theory uncertainty estimates nontrivial

- still limited experience in NLO matching+merging framework
- sophisticated analyses (data-driven extrapolations, reweighting, ...)

New priorities \leftrightarrow dominant sources of theory systematics

- emphasis on backgrounds and NLO Monte Carlo methods
- close intereaction with ATLAS/CMS to identify theory priorities

Goals and guiding principles

- recommend state-of-the-art methodology and encourage use of all relevant tools
- support/coordinate NLO simulations in ATLAS/CMS
- understanding and assessment of theory uncertainties (choices and variations of renormalisation+factorisation+resummation+merging scales in multi-scale processes)

Outline

1 $t\bar{t}H$ Signal

- 2 Backgrounds for $H
 ightarrow b ar{b}$
- 3 Backgrounds for $H o \gamma \gamma$
- 4) Backgrounds for $H \rightarrow WW, ZZ, \tau\tau \rightarrow$ multi-leptons
- 5 Scale uncertainties in NLO matching & merging

NLO tools for $t\bar{t}H$ I

NLO $t\bar{t}H$ cross section

[Beenakker et al '01; Reina, Dawson '01]

- moderate uncertainty (9% scale, 8% PDF+ α_S)
- sufficient for mid-term future

Publicly available NLO+PS tools

- MG5_AMC@NLO (2011)
- POWHEL samples (2011)
- POWHEG BOX [Jaeger et al, 1501.04498]
- SHERPA+OPENLOOPS or GOSAM

 $\sim 10\%$ uncertainty for inclusive observables, more if sensitive to jet radiation

NLO tools for $t\bar{t}H$ II

Spin-correlated top decays in POWHEG, MG5_AMC@NLO, SHERPA

- (NLO production)×(LO decays)
- Breit–Wigner smearing
- spin correlations via $t\bar{t}H(+j)$ tree amplitudes
- \Rightarrow mandatory for signal and all backgrounds!

Towards NLO EW corrections

- weak corrections to $t\bar{t}H$ in MG5_AMC@NLO -10% at high- $p_{\rm T}$
- $2 \rightarrow 2, 3, 4$ NLO EW automation in OPENLOOPS [1412.5157] and RECOLA [1411.0916]
- \Rightarrow relevant for signal *and* backgrounds at high $p_{\rm T}$

NLO tools for $t\bar{t}H$ III

Towards NLO merging for $t\bar{t}H + 0, 1$ jets

- parton-level $t\bar{t}Hj$ SHERPA+GOSAM [Deurzen et al, '13]
- SHERPA and MG5_AMC@NLO support NLO merging
- ⇒ more reliable prediction and uncertainty for extra jet activity (impact on $t\bar{t}H$ analysis?)

Off-shell+EW effects in $pp \rightarrow \ell \nu + 2j + 4b$ **at LO** [Denner at al, 1412.5290]

- tiny $t\bar{t}H$ signal-background interference
- $t\bar{t}b\bar{b}$ QCD bckg receives +16% EW cont and -8% QCD–EW interference!
- $\bullet~{\rm extra}~{+}12\%$ from off-shell top decays
- \Rightarrow calls for detailed off-shell studies at NLO

1 $t\bar{t}H$ Signal

2 Backgrounds for $H \to b\bar{b}$

3 Backgrounds for $H
ightarrow \gamma \gamma$

4) Backgrounds for $H \rightarrow WW, ZZ, \tau \tau \rightarrow$ multi-leptons

NLO $t\bar{t}b\bar{b}$ [Bredenstein et al '09/'10; Bevilacqua et al '09];

- $t\bar{t}b\bar{b}$ dominates $t\bar{t}H(b\bar{b})$ systematics
- NLO reduces uncertainty from 80% to 20-30%

NLO+PS $t\bar{t}b\bar{b}$ **5F** scheme ($m_b = 0$) with POWHEL [Garzelli et al '13/'14]

- $t\bar{t}b\bar{b}$ MEs cannot describe collinear $g \rightarrow b\bar{b}$ splittings
- \Rightarrow inclusive $t\bar{t}$ +b-jets simulation requires NLO merging $t\bar{t}$ + 0, 1, 2 jets

NLO+PS $t\bar{t}b\bar{b}$ 4F scheme $(m_b > 0)$ with SHERPA+OPENLOOPS [Cascioli et al '13]

- $t\bar{t}b\bar{b}$ MEs cover full b-quark phase space
- \Rightarrow inclusive $t\bar{t}$ +b-jets simulation possible

S–MC@NLO $t\bar{t}b\bar{b}$ 4F scheme [Cascioli et al '13]

Good perturbative stability but unexpected MC@NLO enhancement

	ttb	ttbb	$ttbb(m_{bb} > 100)$
$\sigma_{\rm LO}[{\rm fb}]$	$2644_{-38\%}^{+71\%}_{-11\%}^{+14\%}$	$463.3^{+66\%}_{-36\%}{}^{+15\%}_{-12\%}$	$123.4^{+63\%}_{-35\%}^{+17\%}_{-13\%}$
$\sigma_{\rm NLO}[{\rm fb}]$	$3296^{+34\%}_{-25\%}{}^{+5.6\%}_{-4.2\%}$	$560^{+29\%}_{-24\%}{}^{+5.4\%}_{-4.8\%}$	$141.8^{+26\%}_{-22\%}{}^{+6.5\%}_{-4.6\%}$
$\sigma_{ m NLO}/\sigma_{ m LO}$	1.25	1.21	1.15
$\sigma_{\rm MC@NLO}[{\rm fb}]$	$3313^{+32\%}_{-25\%}{}^{+3.9\%}_{-2.9\%}$	$600^{+24\%}_{-22\%}{}^{+2.0\%}_{-2.1\%}$	$181^{+20\%}_{-20\%}{}^{+8.1\%}_{-6.0\%}$
$\sigma_{ m MC@NLO}/\sigma_{ m NLO}$	1.01	1.07	1.28

Large enhancement (~30%) in Higgs region from double $g \rightarrow b\bar{b}$ splittings

 \Rightarrow understand PS and matching systematics!!

$t\bar{t}$ + jets background and merging at NLO

NLO $t\bar{t} + 2$ jets [Bevilacqua, Czakon, Papadopoulos, Worek '10/'11]

 ${\ensuremath{\,\circ}}$ reduces uncertainty from 80% to 15%

NLO merging (FxFx, MEPS@NLO, UNLOPS,...)

0-jet	NLO+PS $t\bar{t}$
1-jet	NLO+PS $t\bar{t}$ + 1 j
$\geq n$ jets	NLO+PS $t\bar{t} + nj$

- NLO and log accuracy for $0, 1, \ldots n$ jets
- ullet separated via $k_{\rm T}\text{-}{\rm algo}$ at merging scale $Q_{\rm cut}$
- smooth PS–MEs transition ↔ MEs with PS-like scale and Sudakov FFs

NLO merging for $t\bar{t} + 0, 1$ jets

- FxFx with MADGRAPH5/AMC@NLO [Frederix, Frixione '12]
- MEPS@NLO with SHERPA+GOSAM [Höche et al '13]

MEPS@NLO for $t\bar{t} + 0, 1, 2$ jets (SHERPA+OPENLOOPS)

[Höche, Krauss, Maierhöfer, S. P., Schönherr, Siegert '14]

Consistency with LO merging and NLO+PS

• decent (10-20%) mutual agreement

Reduction of μ_R, μ_F, μ_Q variations

$N_{\rm light-jet} \ge$	0	1	2
LO	48%	65%	80%
NLO	17%	20%	20–30%

Merging scale choice and dependence

- $Q_{\rm cut} = 30 \pm 10~{\rm GeV}$ and $\ll 10\%$ dependence
- \Rightarrow NLO precision for $t\bar{t} + 0, 1, 2$ jets

Next steps

- improve CPU performance (ongoing)
- consolidate understanding of theory uncertainty
- combination with $t\bar{t}b\bar{b}$

1 $t\bar{t}H$ Signal

- 2 Backgrounds for $H
 ightarrow b ar{b}$
- (3) Backgrounds for $H\to\gamma\gamma$

4) Backgrounds for $H \rightarrow WW, ZZ, \tau\tau \rightarrow$ multi-leptons

Relevant backgrounds and existing predictions

Relevant backgrounds

- $t\bar{t} + 1, 2\gamma$, single-top+1, 2γ , jets+1, 2γ
- $\bullet~H{+}{\rm jets}$ with $H\to\gamma\gamma$ and HF jets

NLO+PS for $t\bar{t}\gamma$ and $t\bar{t}\gamma\gamma$ with POWHEL [Kardos, Trocsanyi '14]

(available also in MG5_MC@NLO and SHERPA+OPENLOOPS)

- $K\simeq 1.25$ and 14% NLO scale uncertainty ($\mu=H_{\rm T}/2$)
- mild MC effects for inclusive observables

Isolation of hard photons (POWHEL)

- realistic cone isolation at NLO+PS level
- loose Frixione isolation at generation-cut level
- \Rightarrow avoid fragmentation component

Some open issues in $t\bar{t}$ +photons

Production of $t\bar{t}$ +multiple photons

- ATLAS/CMS requires sample with N_{γ} =1,2
- photons from matrix elements and/or shower
- \Rightarrow requires merging of $t\bar{t} + 0, 1, 2\gamma$

Radiative top decays [hep-ph/0604120]

• $t\bar{t}\gamma$ at NLO including radiative top decays $(t \rightarrow b\ell^+ \nu + \gamma)$ [Melnikov, Schulze '11]

 $\,$ o photons from top decays dominate up to $p_{\rm T}(\gamma) \lesssim 60\,{\rm GeV}$ $_{\rm (smooth\ isolation,\ R_{\gamma\,i}\ >\ 0.4)}$

- $\Rightarrow~$ requires detailed studies for $t\bar{t}+2\gamma$
 - S. Pozzorini (Zurich University)

1 $t\bar{t}H$ Signal

- 2 Backgrounds for $H \rightarrow b\bar{b}$
- 3 Backgrounds for $H o \gamma \gamma$

4 Backgrounds for $H \rightarrow WW, ZZ, \tau\tau \rightarrow$ multi-leptons

 $t\bar{t}V$ +jets with $V = W, Z/\gamma *$ (dominant MC systematics)

- enters signal through extra jet emissions
- requires precise MC for $t\bar{t}W + 0, 1, 2$ jets (same signature as $t\bar{t}H(H \rightarrow WW \rightarrow \ell\nu jj)$!
- $t\bar{t} + Z/\gamma(\rightarrow \ell^+\ell^-)$ requires off-shell effects down to small $m_{\ell\ell}$

VV+**jets** (subdominant MC systematics)

- requires inclusive sample with NLO precision up to 2 jets
- HF jets crucial (genuine $VVb\bar{b}$ component and light-jet mistags)
- mainly $WZ \rightarrow 3\ell$ but also $ZZ \rightarrow 4\ell$

Existing predictions and ongoing studies

NLO+PS $t\bar{t}V$ with POWHEL [Garzelli et al '12]

- $t\bar{t} + W^{\pm}/Z$ with NWA uncorrelated decays
- *K* = 1.1–1.35
- mild NLO uncertainties (10% scale, 8% PDFs)

Ongoing $\operatorname{SHERPA+OPENLOOPS}$ and $\operatorname{MG5_AMC@NLO}$ studies

- $t\bar{t}V + 0, 1$ jets NLO merging
- $t\bar{t}\ell^+\ell^-$ with off-shell $Z/\gamma \to \ell^+\ell^-$ possible
- WZ + 0, 1, 2 jets possible (but HF-jets tricky)

1 $t\bar{t}H$ Signal

- 2 Backgrounds for $H o b \bar{b}$
- 3 Backgrounds for $H o \gamma \gamma$

4) Backgrounds for $H \rightarrow WW, ZZ, \tau \tau \rightarrow$ multi-leptons

5 Scale uncertainties in NLO matching & merging

Prescriptions for scale choices and variations

- basis for definition of *intrinsic* precision of NLO Monte Carlo
- matching (µ_Q) and merging (Q_{cut}) involve two technical scales; no widely accepted prescription for their choice and variation (Q_{cut} debate)!

Benefits of NLO matching and merging (top-pair p_T in $t\bar{t} + 0, 1$ jets)

 $\mu_R = \xi \, m_t$ • renorm. scale

 $\mu_Q = \mu_F = \xi \, m_t$

- factorisation scale
- resummation scale

NLO merging

- 10% accuracy over whole spectrum!
- error estimate more realistic!

Choice and variation of merging scale Q_{cut} ?!

Virtue of small $Q_{\rm cut}$

 $\, \bullet \,$ NLO accuracy over whole $p_{\rm T}$ spectrum of experimentally resolved jets

Formal problem at (very) small $Q_{\rm cut}$ [Hamilton, Nason, Oleari, Zanderighi '12]

- ${\, \bullet \,}$ when $Q_{\rm cut}$ approaches Sudakov peak, i.e. $\alpha_S \log^2(Q_{\rm cut}/Q_{\rm hard}) \sim 1$
- $\Rightarrow~$ fake subleading logs generates $\alpha_S^{1.5}$ uncertainty
- \Rightarrow Optimal Q_{cut} choice? Uncertainty?

Proposal (quantitative recipe)

- consider jet- $k_{\rm T}$ dist \Rightarrow max $Q_{\rm cut}$ sensitivity
- push Q_{cut} down to Sudakov region
- take *local* Q_{cut} dependence as uncertainty estimate
- stop before you exceed NLO scale dependence

Example: MEPS@LO for $t\bar{t} + 0, 1$ jets

• $Q_{\rm cut}=40\ldots 5\,{\rm GeV}$ \Rightarrow less than 10% uncertainty for $Q_{\rm cut}\geq 10\,{\rm GeV}$

Summary and Outlook

New $t\bar{t}H$ priorities and activities

- emphasis on backgrounds and NLO matching+merging
- lot of exchange between theory ↔ ATLAS/CMS

Next meetings and activities

- start *tH* meetings (soon)
- $\bullet~$ focus $t\bar{t}H$ activities on "top priorities" and new meetings to survey TH and ATLAS/CMS progress
- theory requiremets from new Run2 analyses (fat jets, MEM, ...)?

Guarantee coherence of MC simulations

- tool comparisons based on standard setup (coming soon)
- theory agreement on uncertainty estimates
- detailed recommendations for ATLAS/CMS

Recommendations and Priorities

Theory priorities and recommendations (loose selection) I

$t\bar{t}H$ signal

- NLO merging of ttH + 0, 1 jets
- NLO decays for top and Higgs

$H \rightarrow b\bar{b}$ backgrounds

- use 4F NLO+PS for $t\bar{t} + b$ -jets; study systematics of $g \rightarrow b\bar{b}$ shower splittings
- use NLO merging for $t\bar{t} + 0, 1(2)$ jets
- combination of 4F $t\bar{t}b\bar{b}$ & $t\bar{t}+jets$
- sound prescription for resummation/merging scale uncertainties
- NLO+PS for $t\bar{t} + c$ -jets
- EW contributions and EW–QCD interferences

$H \rightarrow \gamma \gamma$ backgrounds

- ${\scriptstyle \bullet }$ use NLO+PS tools for $t\bar{t}{\rm +photons}$
- merging of $t\bar{t} + 0, 1, 2\gamma$ and radiative top decays

$H \rightarrow WW, ZZ, \tau \tau \rightarrow$ multi-lepton backgrounds

- NLO merging for $t\bar{t}W + 0, 1(2)$ jets
- NLO merging for $t\bar{t}Z/\gamma + 0, 1$ jets with off-shell $Z/\gamma \to \ell^+\ell^-$ (also from top decays)
- NLO predictions for WZ + b/c-jets

see more details at: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGTthMeetingsSummary