\$Fermilab

Tracker commissioning plans

D Adey

MICE CM40 26th October 2014

adey@fnal.gov

Content

- Focus on electronics and commissioning needs
- QA recently completed
- Issues for commissioning ISIS RF integration, consideration of efficiencies, alignment (M Uchida)
- November plans
- Step IV commissioning
- Not everything has equal importance

Cryostats and associated

- Cold heads and compressors serviced
- Vacuum pumps checked
- One failed PSU returned to vendor, spare purchased
- C MacWaters managing and installing into hall hall infrastructure helium lines, vacuum, downstream racks, C&M/DAQ fibers, BNC etc.

QA of existing electronics

- 8/30 9/13
- QA setup using fast-DAQ and internal triggering of AFES no external pulser or RF period generator
- 16 AFE boards (front end electronics lots of spares) currently in use rotating on cryostat 3
- All currently used LVDS cables (data cables, very difficult to replace)
- All currently used VLSB boards (VME buffers, almost impossible to replace)

Set 1 ADC

Set 1 Discriminator InjMap1

- Charge artificially injected into each channel tao test discriminator (also trigger timing etc.)
- Based on 32 channel chip
- Did not inject in all channels simultaneously given cross-talk, inject in groups of 4

100

Set 1 Discriminator InjMap1

10⁴

10³

10²

• Discriminators for first set of four

500

Some occasional • discriminator non-firing (injection good from ADC)

Set 1 ADC InjMap1

Set 1 ADC InjMap1

More probable cross talk for this set of channel injection

Set 1 TDC InjMap1 Time circuit on

QA Summary

- 3 boards with complete dead/malfunctioning chips
- Up to 4 more boards with semi-functioning chips eg. Cross talk.
- Cross talk may not be so much of an issue using real signal injection, and should in any case be dealt with by reconstruction – low level noise issue
- One known dead LVDS cable out of 64 spares available but limited
- All bias circuits were confirmed. Heater circuits unavailable without cold system
- VLSBs functional except for one known board with single dead bit on event number input – 50% spares
- VME controller failed on final run probably the fiber

Next

- Modify, upload firmware on new set of spares (4 + 16 taken from D0)
- Verify spare set
- Replace boards with dead chips
- Firmware updates and replacements can take place during installation in November
- Second round of QA depending on time

- Periodic dead-time due to pipelining
- Need to alive VLPC integration with particle arrival
- RF buckets asynchronous – input ISIS RF into AFEs
- Two periods to optimize integration period (to retrieve all the light) and alive period – to ensure triggers correspond to captured light
- Proven in single station test, but not to required precision (10^4 triggers?)

Fraction of trigger requests inside Alive Window

Number of Photoelectrons as a function of Integration Window Delay

ĝ

Spacepoint Probability as a function of Integration Window Delay

අපු 0.9 0.94 0.92 0.9 0.88 0.86 0.8 200240 Integration Window Delay, t (ns)

Efficiency

- Inefficiencies are monitored by reconstruction and analysis cuts, and compensated for by longer running
- Issue is correlation between efficiency and parameters of interest – P_T, P_Z
- Aside from needing to run longer, not a first order problem
- Mostly everything shown is from a toy MC/statistical calculation

• Next consider non-uniform efficiency and statistical behavior of efficiency

Efficiency of 5 triplet tracks with N modules at X efficiency

Can tolerate:

- Fewer than 10 modules at 90%
- Fewer than 5 modules at 80%
- Maybe 1 module below 70%

5 triplet track efficiency

Efficiency of 5 triplet tracks with N channels at X efficiency

Can tolerate:

- Fewer than 800 channels at 90%
- Fewer than 200 channels at 80%
- Fewer than 100 channels at 70%

But, without correlations to desired observables, could just take more data

5 triplet track efficiency

Feature	Risk	Measurable
Scintillating fibre		No
Mirror		No
Scintillating/internal waveguide connection		No
Internal waveguide		No
Internal/external waveguide connection		No
External waveguide		In progress
External/cassette connection		No
VLPC		Yes
VLPC bias		Yes - combined
VLPC temperature		Yes - combined

- Efficiency = fibre x mirror x internal connection x internal waveguide x external connection x external waveguide x cassette connection x VLPC
- Provided we have installed the best available equipment, the efficiency of each subsystem is irrelevant
- Need to know the combined efficiency BEAM

Time requirements

- Hit efficiency binomial error with high p means very few events for 1%, but really need 0.1% or 0.05% 1000 to 4000 hits
- Hit requirement based on PE cut, which is convolution of statistical distributions not even Poisson, but also high λ
- Assumes a lot about beam shape and size at extremities

LED and beyond

- Illuminate all channels with LED and measure mean light yield (scaled to LED location)
- Normalize to MIP mean PE from beam in central channels with minimal statistics – MIP/LED ratio gives all information except on scintillator degradation
- Use efficiency map to re-simulate performance and emittance resolution
- First need to fully test and understand internal LED vs. known external LED

Other Step IV considerations

- 5.7 microsecond digitization time impacts on number of accepted triggers
- Essentially irreducible
- Timing information employed in commissioning likely available for global reconstruction
- Temperature and bias (efficiency) stable over time
- Time and discriminator settings may require regular checks/recalibration – a few hours each time
- Zero suppression will be enabled

Trigger Acceptance for Run #4055

What information is needed?

- Full understanding of pedestal and gain values and distributions, including dispersion
- Points/trigger (veto period) LY/point or TDC (int. period)
- Large statistics measurement of hit efficiency and MIP light yield, necessitating LED + beam
- Expectation of solenoid acceptance in each mode / TOF1 acceptance

Figure 11: Space-point finding

	Beam		(p_z) (MeV/c)	σ_{pz} (MeV/c) ε_x (π	ε_x (π mm-rad)	π mm-rad) α_x	β_x (m)	$\varepsilon_y \ (\pi \text{ mm-rad})$	αy	β_y (m)
	ε_N	p_z								
μ ⁻ 3	3	140	171.58 ± 2.39	22.81 ± 0.32	2.28 ± 0.12	0.50 ± 0.01	1.49 ± 0.09	0.95 ± 0.05	-0.55 ± 0.28	3.62 ± 0.18
		200	223.24 ± 2.72	24.02 ± 0.29	1.74 ± 0.09	0.49 ± 0.01	1.69 ± 0.10	0.78 ± 0.04	-0.50 ± 0.25	3.71 ± 0.19
		240	260.55 ± 3.24	24.49 ± 0.30	1.49 ± 0.08	0.49 ± 0.01	1.80 ± 0.10	0.75 ± 0.04	-0.41 ± 0.21	3.65 ± 0.18
	6	140	176.43 ± 2.27	22.83 ± 0.29	2.17 ± 0.12	0.52 ± 0.01	1.57 ± 0.09	0.96 ± 0.05	-0.54 ± 0.28	3.64 ± 0.18
		200	232.22 ± 2.51	23.62 ± 0.26	1.53 ± 0.08	0.55 ± 0.01	1.85 ± 0.10	0.78 ± 0.04	-0.51 ± 0.26	3.80 ± 0.19
		240	270.96 ± 3.65	24.53 ± 0.33	1.51 ± 0.08	0.48 ± 0.01	1.80 ± 0.10	0.73 ± 0.04	-0.39 ± 0.20	3.51 ± 0.18
	10	140	183.46 ± 2.35	22.75 ± 0.29	2.01 ± 0.11	0.53 ± 0.01	1.62 ± 0.09	0.92 ± 0.05	-0.56 ± 0.29	3.68 ± 0.18
		200	247.23 ± 3.56	24.20 ± 0.35	1.23 ± 0.07	0.59 ± 0.01	2.22 ± 0.13	0.75 ± 0.04	-0.52 ± 0.27	3.81 ± 0.19
		240	281.89 ± 3.65	25.28 ± 0.33	1.65 ± 0.09	0.56 ± 0.01	1.82 ± 0.10	0.64 ± 0.03	-0.39 ± 0.20	3.40 ± 0.17
μ ⁺ 3 6	3	200	222.69 ± 2.40	26.49 ± 0.29	1.98 ± 0.11	0.49 ± 0.01	1.58 ± 0.09	0.83 ± 0.04	-0.40 ± 0.20	3.44 ± 0.17
		240	257.97 ± 2.83	26.37 ± 0.29	1.59 ± 0.08	0.57 ± 0.01	1.87 ± 0.11	0.76 ± 0.04	-0.31 ± 0.16	3.40 ± 0.17
	6	140	176.45 ± 1.98	24.36 ± 0.27	2.32 ± 0.12	0.45 ± 0.01	1.50 ± 0.09	0.95 ± 0.05	-0.48 ± 0.25	3.59 ± 0.18
		200	229.16 ± 2.36	25.87 ± 0.27	1.91 ± 0.10	0.50 ± 0.01	1.61 ± 0.09	0.81 ± 0.04	-0.38 ± 0.19	3.42 ± 0.17
		240	267.65 ± 2.85	25.79 ± 0.28	1.69 ± 0.09	0.54 ± 0.01	1.76 ± 0.10	0.76 ± 0.04	-0.26 ± 0.14	3.23 ± 0.16
	10	140	182.42 ± 2.05	23.87 ± 0.27	2.16 ± 0.12	0.47 ± 0.01	1.56 ± 0.09	0.92 ± 0.05	-0.48 ± 0.24	3.59 ± 0.18
		200	243.39 ± 2.65	26.77 ± 0.29	1.66 ± 0.09	0.51 ± 0.01	1.78 ± 0.10	0.78 ± 0.04	-0.38 ± 0.19	3.37 ± 0.17
		240	274.77 ± 2.94	24.79 ± 0.27	1.78 ± 0.09	0.51 ± 0.01	1.65 ± 0.09	0.76 ± 0.04	-0.22 ± 0.11	3.07 ± 0.15

What tools are needed?

• ADC plotting of beam and LED with full peak finding and dispersion measurements – not in MAUS (separate calibration code using stream-lined DAQ) options:

1) Add to MAUS (plotting only) 2) Add DATE unpacking to calibration 3) Use calibration DAQ with MLCR trigger

- Online/offline reconstruction to compare tracks in tracker to triggers, correlate to expected acceptance of TOF trigger, which should be calculated
- EO thesis plots into online rec

1) Raw ADC/TDC for all electronics channels on each tracker - gives information about chip status and zero suppression – pure monitoring (no cabling or calibration)

2) Calibrated to PE for all electronics channels - gives information on VLPC performance (requires calibration)

3) PE for each fiber-channel - gives information on fiber performance

4) Hits / plane, space points / station - gives information about cabling, reconstruction efficiency

5) Same as a fraction of trigger requests and accepted triggers - gives information on timing of RF window; hits as a function of time within veto period/ points within spill gate as well. Part of this is the differing acceptance between TOF1 and the solenoid on a momentum/field basis. Calculate and then divide space-point-non-rec by it? Easier for a shifter to see a deviation from 1 than 0.03 or whatever.

6) Event displays: x-y by station & the circle swirly-line plots Adam uses. Need to randomly select events or something.

November

- Installation of all compressor/cryostats. Cool-down of cryostats full test of vacuum and cryo systems. Can only run upstream – 1 Weiner PSU being repaired, awaiting spare
- Upload firmware onto spares taken from D0
- Integrate/debug with controls and DAQ infrastructure as changed since the last test two years ago (new machines, DATE version, FPGA trigger)
- Calibrate
- Use cassette top LED with TOF trigger LED to time in, using ISIS RF
- Connect waveguides (possibly in PRY positions) and repeat with internal LEDs

Tracker commissioning runs

• Readout commissioning – no beam, random and LED triggering to iron out VME based trigger logic – 2 days

 Calibration – no beam runs with LED varying bias, discriminator and TDCs (latter not Step 4 essential) – 4 days (bias) + 4 days (discriminators) + 4 days (timing) = 12 days

 Timing commissioning – starting with LED and moving to beam to ensure integration and veto period align with arrival of particles – 5 days

• Fiber efficiency – 1 hour LED, 2 hours beam

• Alignment checks – no field straight tracks (~25% transmission) to reconstruct actual alignment of tracker in reference frame – 1-5 days depending on previous commissioning

Tracker commissioning runs

- Three weeks, without beam
- Two weeks, with beam
- Total commissioning time alone is not enough need time between commissioning and real running to analyze data, make adjustments, etc.
- Run 1: 15/4/15 24/4/15?
- Run 2: 2/6/15 23/6/15?
- Tracker should get unrestrained (by other detectors) time at the beginning of the commissioning period

Backups

Set 2 Reference

Set 3 Inj1+2

Set 3 Inj4+8

Set 4 Reference

