Preparing for Step IV Data Taking

Chris Rogers, ASTeC, Rutherford Appleton Laboratory

Plan for Analysis

- The construction project is extremely late
 - We have a very short period to take data in
 - We have lots of data to take
- Data taking will be busy and rushed
 - There will not be much staff for analysis
 - There will be a lot of data flying
- Our jobs depend on "smooth" data taking
 - Funding agencies have made this very clear

We must turn around analysis quickly and smoothly

- We must have analysis in place before data taking
- We must have done the analysis in MC before data taking
- Analysis team during data taking should be dealing with problems, not the basic analysis
- We are late!
 - And the heat is on

Step IV Papers

- For quick release (these are papers):
 - Description of MICE Step IV
 - First observation transverse emittance reduction
- Slower boil, worthy of a publication, maybe not one per bullet
 - Diagnostics MAUS
 - Global track fitting
 - Magnetics Beamline integration
 - Measurement of optical emittance growth and non-linearities
 - Direct measurement of the transfer map including higher order terms

Absorber Absorber

- Energy loss
- Multiple scattering in vacuo; dependence on Bz
- Angular momentum
- Beam (de)polarisation
- Wedge

Cooling Channel Analysis

- (Long, probably following end of Step IV with all results in) Observation of transverse emittance reduction
- Emittance exchange with wedge

Description of MICE Step IV

- Section headings:
 - Introduction
 - Beamline (Beamline Integration)
 - Magnetic lattice (Magnets/Beamline Integration)
 - Field mapping
 - Description of absorbers (Absorber)
 - Diagnostics (Detectors)
 - Subsection for each detector
 - Readout and software (Computing)
 - Diagnostic performance (Analysis/MAUS)
 - Purity/efficiency of PID
 - Track fitting and resolutions
 - Measurement of magnet alignment (Analysis/Beamline Integration)
 - Quality of transported beam (Analysis)
- No emittance reduction plots
- Highly limited or no MCS and dE/dx plots
- Referencing previous papers on various topics

We have section headings

Plan

- Will ask named groups to nominate section authors
- Everything up to "Readout and Software" can be written already, referencing existing papers
- Need to develop Monte Carlo/analysis for subsequent sections
 - Propose focus workshop/kickoff in mid-November
 - Late November is MPB
 - Highly desirable to be "in motion" well before christmas
 - Aim to deduce a list of plots, beam settings, MC settings by end of that meeting
 - Seek "champions" to lead on each topic
 - Group leaders to nominate by mid-November
 - Develop MC and analysis procedures
 - Feed back into run plan before running!
 - Understand how we measure/minimise errors

First observation of emittance reduction

- First observation of transverse emittance reduction
 - Show preliminary (but publishable) plots for the first "physics block"
 - Linear beam optics
 - dE/dx, MCS just enough to support claim for "observation of emittance reduction"
 - Comparison with MC
 - Emittance reduction vs beta, momentum, etc
- Identify section leads by christmas
- Kick-off meeting in January

Global Track Fitting

- Probably
 - No one has ever done Kalman fit through quadrupoles
 - Worth pointing out that linear (and higher order) accelerator beam optics can be used as a linear system for Kalman filter
- Worth a paper I think
 - Need global track fitting routines to be done
- Owned by global reconstruction/MAUS

Magnetics

- As a collaboration, we do not understand the non-linear beam optics
 - This is not well understood by muon accelerator community in general
- There is scope for at least one theory paper and at least one experimental paper on this topic
- We should seek to develop non-linear beam optics capability to complement 3D tracking
 - Support overlapping solenoids
 - Support solenoids overlapping RF cavities (a paper in itself)
- I propose Beamline integration team should take lead
 - The group may need strengthening

Absorber

- We have promised "high resolution" measurement of materials physics processes
- Can we really deliver on this?
 - In absence of fields we lose the tails of the beam where all the action is
 - Can we untangle the effects of field if we have fields switched on?
- Do we have the right data in our run plan?
 - Do we have enough statistics?
 - We seek to measure tail effects
 - Do we have the right data
 - Do we need more "field off" data
- These questions must be answered before data taking
 - The time to act is now
- Do we have sufficient people to address this?
 - I think Pavel Snopok "owns" the absorbers but not sure

Absorber (cont)

- Two additional things that might make a paper
 - Is MC model correct in presence of fields
 - Can we see any beam depolarisation effect from e.g. high Z materials like in the diffuser?
- Speculative, needs more study

Cooling Channel

- Observation of emittance reduction
 - This paper will be informed by the "first observation" paper and studies surrounding it
 - Not much more to say now

- MICE should do everything to say "it is successful"
- MICE should do everything necessary to support the accelerator physics community to develop realistic ionisation cooling lattices
- Is the core programme so sacred?
 - Do we learn much more by studying all the absorbers in 1000 different configurations at high resolution?
- Personal view: No!
 - We should certainly seek to run a wedge absorber and sacrifice core programme to do it
 - This may support core programme by enabling systematics measurement
 - Absorber group to demonstrate
- Need to more thoroughly develop the long observation of emittance reduction paper
 - Understand what the compromise is
- Absorber group should take the lead on this

- MICE should do everything to say "it is successful"
- MICE should do everything necessary to support the accelerator physics community to develop realistic ionisation cooling lattices
- Is the core programme so sacred?
 - Do we learn much more by studying all the absorbers in 1000 different configurations at high resolution?
- Personal view: No!
 - We should certainly seek to run a wedge absorber and sacrifice core programme to do it
 - This may support core programme by enabling systematics measurement
 - Absorber group to demonstrate
- Need to more thoroughly develop the long observation of emittance reduction paper
 - Understand what the compromise is
- Absorber group should take the lead on this

Support Issues

- MICE would like an offline analysis tool
 - Calculation of emittances
 - Handling of errors
 - Shared placeholder for e.g. beam selection routines etc
- MICE would like a control room analysis tool
 - Check magnets are not very misaligned
 - Check beam optics looks reasonable
 - Check energy loss looks reasonable
- Field mapping is required by engineers by early December
 - Required to install magnets (for alignment)

Conclusions

- The construction team have left us with not much time
 - We cannot retake data
 - We have to turn around early analysis fast for funding agencies
- We must have a fleshed out analysis in place for the fast turnaround papers
 - My job depends on it!
- We will take the wrong data unless we prepare analysis for the papers in advance
- We need to develop a material physics group
- We need to strengthen our beam physics capability
- Final thought:
 - This is a top down overview
 - I have not thought of the most interesting, inventive papers
 - That is your job
 - I await suggestions!