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4D lonisation Cooling
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4D (transverse) cooling achieved by ionisation energy loss
= Absorber removes momentum in all directions
= RF cavity replaces momentum only in longitudinal direction
= End up with beam that is more straight
Stochastic effects ruin cooling
= Multiple Coulomb Scattering increases transverse emittance
= Energy straggling increases longitudinal emittance
Needed in IDS-NF to improve muon capture

Needed in Muon Collider to provide luminosity
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= Baseline lattice for IDS-NF Muon Front End
= Three designs studied
= All have principally the same coil arrangement
= Singlet lattice with alternating +- coils
= Cell length ranging between 75 cm and 300 cm

= This has been the essential NF design since ~2005

Magnetic Field, B (T)



Neutrino Factory (NuMAX)
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Muon Collider (Muon Accelerator Staiging Study)
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Vacuum RF Cooling Channel

et B Concept: Generate dispersion and cool
> via emittance exchange in a wedge
Moo L G absorber

Apip

Proposed solution: Rectilinear channel
with tilted alternating solenoids and
wedge absorbers

Tapered channel: The
focusing field becomes
progressively stronger to
reduce the equilibrium
emittance.

Lattice Proposed by Valeri Balbekov (FNAL) °



| Length [m] | Inner radius [m] | Thickness [m] | I/A [A/mm?] |

| 0317 0.025 0.029 164.26
0.337 0.055 0.041 142.43
0.375 0.098 0.056 125.88
0.433 0.157 0.067 119.07
0.503 0.228 0.120 85.99
0.869 0.355 0.089 39.60
0.868 0.454 0.104 44.30

m 0.992 0.575 0.252 38.60

R. Palmer — B. Weggel
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= Questions to answer
= Step IV stuff is in bold
= | only list beam-based questions
= Magnetics
= Did we do the alignment well enough?
= Do we understand the linear beam optics?
= Do we understand the non-linear beam optics?
= Do we understand the resonance structure/stop bands?

= Absorber
= Do we understand MCS?
= Do we understand Energy Loss?
= What about longitudinal-transverse correlations?
= What about high Bz?
= What about polarisation?
= What about funny absorber geometry? And materials?



! Questions (2)

RF

Do we understand the RF beam dynamics when RF is
superimposed on solenoids

= Probably no one has studied this problem
= Certainly not higher order terms
= What about alignment?

= What about stability across the RF pulse?
= |ntegration

Do we see the expected emittance change?
= Transverse?

= Longitudinal?
= Emittance exchange?
Do we see the expected transmission
= Have we correctly modelled our apertures?



Magnetics

= Magnetics
= Did we do the alignment well enough?
= Do we understand the linear beam optics?
* Do we understand the non-linear beam optics?
= Do we understand the resonance structure/stop bands?



Magnetics
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= MICE should be easier to align than NF-IDS

= In NF-IDS we have 5 cells bolted together followed by a bellows every
sixth cell for alignment

= How well can we align MICE?



Beam ellipse
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Dynamic Aperture vs current
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= Calculate beta function at focus as a function of coil current

= Changing the current simply scales the momentum

= Note that dbeta/dp gets smaller (better) at higher
momenta/currents

= Acceptance reaches ~ maximum
= |s our model for beta correct?

= |s the prediction for dynamic aperture correct?
= Test by measuring D.A. for different current scalings




Non-Linear Terms vs End Field
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= Dynamic aperture is sensitive to amount of shielding
= We can predict this dependence, is it right?

= Measure by comparing D.A. in flip mode vs non-flip mode
= For same optics



Absorber

= Absorber
= Do we understand MCS?
= Do we understand Energy Loss?
= What about longitudinal-transverse correlations?
= What about high Bz?
= What about polarisation?
= What about funny absorber geometry? And materials?



Absorber - MCS

T. Carlisle thesis
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Figure 5.8: Equilibrium emittance predicted by formulae and obtained in MAUS



Absorber - Energy Loss

PDG — mean energy loss PDG- straggling
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Theoretical Measured Theory  Measured
) p/m fwhm' fwhm Peak dE  Peak dE
Aitken et al. {1969)
P 2160 315 089 20 333.6 338.0 360 - 1246 1329
T 2160 65.3 1.07 20 281.2 286.5 266 1031 1061
e 2160 458 897 20 166.8 176.1 176 - 686 687
10 169.2 683
average differences : {r,)=3 {r,)=-3

H. Bichsel, Rev. Mod. Phys. 60, 663 (1988),
No errors in Aitken et al (but few % is typical); No muons!
Mean energy loss is not well defined experimentally



! Questions (2)

= Cooling

Do we see the expected emittance change?
= Transverse?

= Longitudinal?
= Emittance exchange?
Do we see the expected transmission
= Have we correctly modelled our apertures?



NF Performance
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= Cooling performance in NF is assessed in two | —wise
ways

= Number of muons in a 15 or 30 mm ellipse
= Transverse emittance reduction
= What happens if we mis-estimated X07?
= Uncertainty ~ few %
= What happens if we mis-estimate dE/dz
= Uncertainty ~ few % ; T
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Back to Cooling
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= Apply the standard formulae
= |ntroduce a theoretical uncertainty in X0
= Equivalent to theoretical uncertainty in <dE/dz
= 5% error in X0 leads to 5% error in emittance
= (beta = 800 mm, PDG LiH, IDS lattice)



And Capture Performance...
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= Really we care about number of good muons in accelerator
acceptance
= |IDS-NF baseline accelerator had 30 mm acceptance
= Also considered 15 mm acceptance accelerator
= Assume Gaussian beam and look at Chi2 with 4 dof
= Note sensitivity to the cut!

= What about apertures and non-linear effects



Conclusions

= Demonstrate engineering of the channel
= Demonstrate beam propagation through the channel
= Demonstrate ionisation cooling

= MICE is a unique experiment with potential to make several
unique contributions to accelerator physics

= There are many fun, interesting challenges to be had
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