Electron Muon Ranger (EMR) Reconstruction Status

François Drielsma on behalf of the EMR Group

University of Geneva

October 26, 2014

EMR Reconstruction Software

EMRPlaneHits

- IN DBB and fADC data (EMRDaq)
- **OUT** N+2 reconEvents with EMRPlaneHits (N primary + noise + decays) EMRSD (sensitive detector)

IN Geant 4 steps

OUT MC EMRHits (Bars)

EMRMCDigitization

- **IN** MC EMRHits (Bars)
- **OUT** N+2 reconEvents with EMRPlaneHits (N primary + noise + decays) EMRRecon
 - IN N+2 reconEvents with EMRPlaneHits
- **OUT** Reconstructed N+N' reconEvents (N primary + N' secondary + 1)

- 3

Digitization scheme: scintillation and transport

- Quantization Convert G4 energy deposition to a number of scintillating photons n_{sph}: 2000 ph/MeV^a → Apply Birk's Law
- **②** Convert n_{sph} to a number of photons trapped in the WLSf n_{tph} : **4** %^{*a*}
- S WLSf atten.: 2.0 dB/m^a
- Onnector atten.: up to 30 %^b
- Solution CLf atten: 0.35 dB/m^a

10

Digitization scheme: Multi-Anode PM

- Convert the number of absorbed photons n_{aph} to the number of photoelectrons n_{pe} : 20% QE^a
- **②** Correct for photocathode non-uniformity: up to $40\%^b$
- **③** Get ADC counts n_{ADC} : **8** ADC/npe^a

 ${f 0}$ Convert G4 time stamp to a time Δt in ADC counts: 2.5ns/ADC

Digitization scheme: Single-Anode PMT

- Convert the number of absorbed photons n_{aph} to the number of photoelectrons n_{pe} : 14.5 25% QE^a
- Orrect for photocathode non-uniformity: up to $50\%^{ab}$
- Get ADC counts n_{ADC} : **1** ADC/npe^{*a*}
- Set signal baseline: $\sim 130 \text{ ADC}^a$
- Osimulate negative voltage pulse with random noise

New MCDigitization Utils

MCDigitization v. 1.1

 \rightarrow Calibration and attenuation constants fetched directly from looping on the correction files for each bar hit. Inefficient, slow and heavy in the main digitization code.

MCDigitization v. $2.1 \rightarrow 2$ new utilities:

EMRCalibrationMap

IN EMR channel key (planelD, barID), PMT ID (SA, MA)

OUT Calibration factor ϵ

EMRAttenuationMap

IN EMR channel key (planeID, barID), PMT ID (SA, MA), x, y

- **OUT** 1) Connector attenuation
 - 2) WLS and clear fibre length from IP
 - 3) Fibre attenuation
 - 4) Fibre delay

< 回 ト < 三 ト < 三 ト

Cosmics vs Digitized MC

- 4 GeV muons compared with Digitized MC
- The agreement with cosmic data is outstanding
- Peak around 10 and 15 ADC in ToT and 11 ADC in Charge
 - \rightarrow The second peak in ToT is due to the shaper of the MAROC

Digitized Beam Event Display

- The smallest energy depositions don't produce a signal
- The signals are converted using the calibration parameters
- Entirely integrated into MAUS (version 2.1)

François Drielsma (UniGe)

EMR Reconstruction Status

October 26, 2014 8 / 17

Reconstruction: Scheme

François Drielsma (UniGe)

October 26, 2014 9 / 17

3

Reconstruction: Timing Association

Timing cuts are used to sort the EMR hits in different categories:

- primary particles (close to the trigger) are stored in separate EMR reconEvents (*Event 1*, 2, 3, 4);
- **noise** (close to the primary), in an additional reconEvent (*Event 5*);
- the rest, in one last reconEvent (Event 6), i.e.
 - decay products (e, µ);
 - cosmic muons.

Reconstruction: Hit Coordinates

Each particle track is assembled **piecewise** in each projection:

- for each X (resp. Y) plane, the bar with the highest amplitude is selected as the x (resp. y) coordinate of the track in that plane;
- the y (resp. x) coordinate is interpolated as the average y (resp. x) coordinate of the two surrounding Y (resp. X) planes.

Reconstruction: Track matching

- An end point of a decay must match the end point of the primary
- The presence of a secondary discriminates the muons from electrons
- Reconstructed Variables:
 - Presence of a secondary track
 - Range of the primary and secondary track (function of momentum)
 - Total charge in a track
 - Ratio of the last 1/5 of the track over the first 4/5 (> 1 for muons,

$$\sim 1$$
 for electrons), i.e. $R_Q = \frac{\sum_{i=0}^{n_1-1} Q_{pl}^i/(n_1-1)}{\sum_{i=n_1}^{n_2-n_1} Q_{pl}^i/(n_2-n_1)}$

Reconstruction: EMR Data Structure

 \rightarrow Addition of **new variables** (range, presence of a secondary track, etc.) in the current data structure (EMREvent, EMRPlaneHit, EMRBarHit)

- \rightarrow Modification of the corresponding Data Processors
- \rightarrow Modification of the <code>reconEvent Processor Test</code>

イロト 不得下 イヨト イヨト 二日

Integration in MAUS

What has been done:

- EMRPlaneHits map modified to accommodate two additional reconEvents (noise + decays) and fill them
- EMRMCDigitization entirely in MAUS (version 2.1)
- Modication of the data structure implemented
- Data Processors adapted
- New **tests** for the EMRPlaneHits and EMRMCDigitization
- EMRRecon integrated, needs to be revised

To do:

• Test for EMRRecon

\rightarrow Almost completely functional

Calibration Code

A calibration program exists in standalone and improves precision:

- **calibration** uses cosmic data to evaluate the photomultipliers irregularities and give a parameter for each channel
 - ran in March 2014 and correction map included in MAUS
 - ▶ 300k (~ 1 week)cosmic tracks recorded in the EMR
 - Measurement of the mean charge for each bar i in a plane j, $\overline{Q_{ij}}$
 - Calculation of the correction factor $\epsilon_{ij} = \overline{Q_{ij}}/\overline{Q}$, with \overline{Q} global average

TH2EMR

New histogram class displaying the right EMR geometry (triangular bars)

- Constructed on the TH2Poly ROOT class
- Functions inspired from the well known TH2 ROOT class
 - Fill(int i, int j) adds a hit in bar j of plane i
 - Fill(int i, int j, double w) sets weight w to bar j in plane i
 - Draw() draws and saves the histogram

Future prospects

Things will be done in the future to improve the existing code:

- Measurement of the digitization parameters on a test bench
- Calibrate the detector in energy using Monte Carlo simulation
- Improve reconstruction:
 - the coordinate in each plane as a weighted average of the position of the bars hit and their ToT measurements
 - include the triangular geometry in the range measurement
 - redefine the end point of the primary track using bar multiplicity
 - implement PID tag (e,μ,π) based on reconstructed variable using cut based analysis and multivariate analysis
- Further develop the new TH2EMR class

