MICE Geometry

Chris Rogers, ASTeC, Rutherford Appleton Laboratory

Review of Geometry

- Review of geometry work package on 2014-10-23
 - Organised on a very short time scale
 - With apologies to folks who could not attend
- Participants
 - Ryan Bayes
 - Chris Rogers
 - Chris Hunt
 - Jaroslaw Pasternak (remote)
 - Durga Rajaram (remote)
- Meeting page
 - http://micewww.pp.rl.ac.uk/projects/maus/wiki/Geom_workshop_151014

Geometry Aim

- Aim of the geometry is to provide a robust model of MICE
 - MICE is a precision experiment
 - We care about details of windows, absorbers, field maps
- Detectors are sensitive at ~ 3 MeV, ~ 500 micron level
 - Geometry should produce accurate results at ~ 10 % of detector resolution
 - Energy loss at 1 % level $\rightarrow \sim 0.1 \text{ MeV}$
 - Position at few 10s of micron level
- Detectors+physics should drive the errors, not MC
 - (We can probably reduce systematics to around 10% of detector resolution)
- We need a fine-grained geometry

Geometry Specification

- Geometry software should provide support to
 - Track a beam through MICE from target to beam stop
 - At minimum, require one good muon per second
 - Understand effect of misalignment and misconstruction
 - "Systematics studies"
 - Validate the implementation of the geometry
 - i.e. some physicist-understandable display of the geometry
 - Provide automated tools for simulating a particular MICE run, given a run number, time stamp or equivalent
 - Provide sufficiently automated tools for simulating a hypothetical set up
 - Obviously user needs to be able to communicate to the software what they want to change
 - Would like to support batch production
 - Support online reconstruction
 - Require faster load and less detail

Geometry Specification (3)

Anything else?

Implementation (Upload)

- To date the only existing model of MICE lies with Jason Tarrant (integration engineer)
- Seek to import the CAD geometry from the integration engineer
 - Considered doing this by hand

- Decided to experiment with a direct import using "FastRad" tool to generate "GDML" files
- Direct import seemed to work okay
 - Implemented toy geometry which met basic requirements
- GDML geometry is uploaded to CDB with a validity range (in time)
- Magnet currents and other transient settings are uploaded to CDB per run number
 - Proton absorber, diffuser settings, etc
 - Magnet currents, etc
 - Pure MC data gets a negative run number and time stamp in 1970s

Implementation (Download)

- At download time
 - User specifies id, run number of time stamp and downloads geometry
 - GDML geometry is converted to MiceModules format, a custom MAUS format
 - CDB values for transients are read in and added to the geometry
 - This is all cached on the local disk
- At run time

- MiceModules are read in
- MAUS builds the geometry and tracking begins

Status

- Go through requirements one by one
- Requirement: Track a beam through MICE from target to beam stop
 - Yes, this has been done, see Ryan's talks
- Understand effect of misalignment and misconstruction
 - Partially. It is possible to substitute a user-defined geometry element instead of the default CAD one (or move the default CAD one)
 - Need to implement misalignment of entire module
 - Is this sufficient? Seek user feedback
- Validate the implementation of the geometry
 - Yes ... see next slides (Rogers)
 - Nb: Geometry Version 44
 - Nb: ROOT files for all this stuff are available enabling user to zoom in etc

Beamline Materials

- Material as a function of r and z
 - In this plot, move out in plane (x=y, z)
 - This is actual tracking data
 - i.e. what Geant4 sees as it steps through the geometry

Cooling Channel Materials

- Material as a function of r and z
 - In this plot, move out in plane (x=y, z)

Volumes at upstream end

Field maps

Linear Optics

For nominal optic settings c/o Victoria Blackmore

Geometry Status

- Provide automated tools for simulating a particular MICE run, given a run number, time stamp or equivalent
 - Yes
- Provide sufficiently automated tools for simulating a hypothetical set up
 - Some stuff is not automatable e.g. can't easily manipulate material thicknesses
 - Seek user feedback to tell us what they want
- Support online reconstruction
 - No! Current geometry is too heavy for online

Conclusions

- The geometry is okay to use for MC studies
- Some details on windows need to be cleaned up
- Some feedback from users on how they want to run systematics studies etc would be appreciated
- MAUS is YOUR tool tell the developers what YOU want
 - Lead times can be large for feature requests so start asking now!