

Tracker Commissioning and Operation

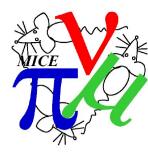
Melissa Uchida

27/10/14

Imperial College London

Overview

- Current Status
- Commissioning plans
 - Equipment and facilities servicing.
 - Electronics QA.
 - Fibre QA.
 - LED tests.
 - Data runs.


Imperial College

London

- Alignment plans.
- Tracker software
 - MC, geometry, reconstruction, emittance, online monitoring...

The Trackers

http://arxiv.org/pdf/1005.3491v2.pdf

Imperial College London

Melissa Uchida

Current Status

- The trackers are built, well understood and fully cosmics tested.
- Both are installed in their respective SS's and are in the hall.

Melissa Uchida

CM40 Tracker Plenary 27

Tracker Commissioning Plan

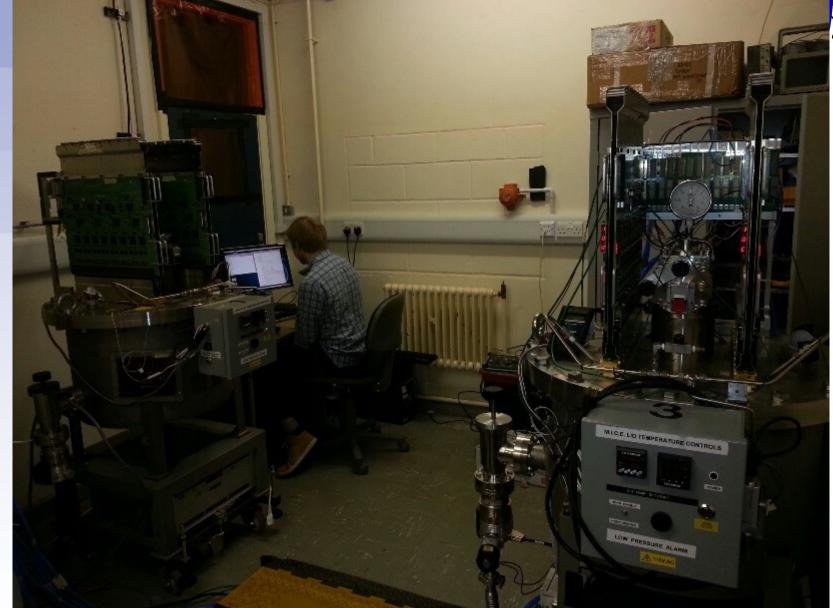
- Services (inc helium lines, vacuum, downstream racks etc) to run cryostats installed in MICE hall by Nov 2014.
 - Servicing of cold heads and compressors.
 - PSU checked/fixed/replaced.
- All systems that can be QA'd are being/have been QA'd.
- Commissioning plan.
 - Alignment of Trackers ← in progress

Tracker commissioning

• Efficiency studies are underway.

•LED system is in place in the Trackers and will be used for readout calibration and eventually for timing calibration.

- Illuminate all channels with LED and measure mean light yield (scaled to LED location)
- Use efficiency map to re-simulate performance and emittance resolution
- Work taking place in November
- Waveguides (fresh for QA) will be installed and the mapping checked in November.
- Installation of all compressor/cryostats. Cool-down of cryostats full test of vacuum and cryo systems.
- Upload firmware onto electronics spares taken from D0.
- Alignment work is in progress and will take us through to the end of the year.


Imperial College London

Melissa Uchida

Electronics QA

Imperial College London

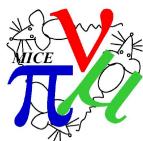
Melissa Uchida

For full details see David Adey's Talk Yesterday

8/30 - 9/13

QA of existing electronics

• QA setup using fast-DAQ and internal triggering of AFES – no external pulser or RF period generator


 16 AFE boards (front end electronics – lots of spares) currently in use rotating on cryostat 3

• All currently used LVDS cables (data cables, very difficult to replace)

• All currently used VLSB boards (VME buffers, almost impossible to replace)

For full details see David Adey's Talk Yesterday

QA of existing electronics

10⁴

 10^{3}

10²

10

8/30 – 9/13
 QA setup using fast-DAQ and internal triggering of AFES – no external increases of the second concernent.

• 16 AFE boa spares) curre

• All currently difficult to rep

 All currently almost impos

Imperial College

London

ADC 250 Likely cross talk 200 Known bad chip 150 100 50 500 2000 1000 1500 Channel

Melissa Uchida

Electronics QA Summary

•3 boards with complete dead/malfunctioning chips

•Up to 4 more boards with semi-functioning chips eg. Cross talk.

 Cross talk may not be so much of an issue using real signal injection, and should in any case be dealt with by reconstruction – low level noise issue

•One known dead LVDS cable out of 64 – spares available but limited

•All bias circuits were confirmed. Heater circuits unavailable without cold system

•VLSBs functional except for one known board with single dead bit on event number input – 50% spares

 \bullet VME controller failed on final run – probably the fibre

Imperial College London

Melissa Uchida

Next

- Modify, upload firmware on new set of spares (4 + 16 taken from D0)
- Verify spare set
- Replace boards with dead chips
- Firmware updates and replacements can take place

during installation in November

Second round of QA depending on time

External Waveguide QA

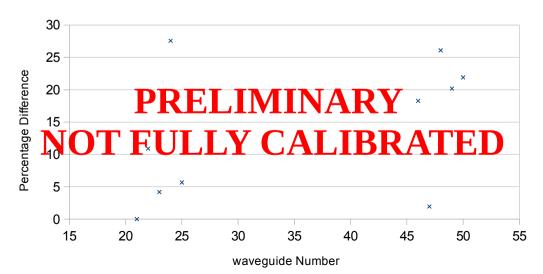
The Team: Jan Greis Kevin Ladhams Celeste Pidcott Melissa Uchida

Imperial College London

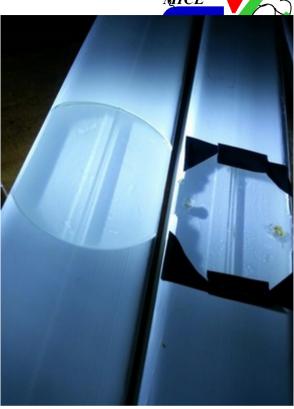
Melissa Uchida

The Waveguides

Motivation:


- All fibres transmit light but
- ~3/128 show signs of damage
- Effect likely due to cracks
- Extent of impact on light yield unknown Purpose of QA

External Waveguide QA


Percentage difference between subset of waveguide

Lightguide Fibre QA

- We adapted an existing scanner that was built for T2K to allow us to keep costs down.
 - Waveguides connect to a connector piece (as they will on the Tracker). Nothing was taken apart/changed/fiddled with.
 - Fibres illuminated by scintillator bars of extruded polystyrene with LED input
- Fibre QA does not impact tracker installation or commissioning.
- Every element has been fully calibrated and all systematics considered.
- Half of the fibres scanned.
- Data analysis underway.
- We have a plan in place for production of spare lightguides.

Imperial College London

Alignment

- Mechanical alignment
 - of tracker inside bore to ~250 microns.
 - of SS (physical) bore to cold mass to <1mm. ← field maps available and will be analysed.
 - of SS in hall possible to ~1mm .
- Internal alignment

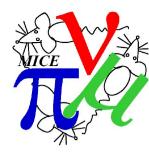
Imperial College

London

a)Rotational offsets between tracker stations \leftarrow work in progress.

- b)Non-parallel tracker stations (pitch) ← Has been considered but has been shown to have negligible impact.
- c)X-Y offsets in trackers stations ← Accounted for in software by E. Santos.
- Between US and DS Trackers
 - Misalignment between the two Trackers \leftarrow work in progress.

See talk by M. A. Uchida yesterday Alignment Between Tracker Detectors

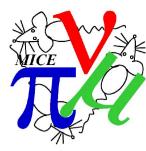


- Tracker misalignment cannot affect emittance of the beam only the measurement of it...
- Compare tracker, bore and cold mass alignment data.
 - We have the data from SSU and SSD is available
- Study (mathematically) the effect of misalignments (offset and rotation) between Trackers on emittance measurement sensitivity.
- Full MC study of misalignment including scattering effects with manually offset DS Tracker to US Tracker by <3mm and <3mrad.
- From this we will finalise our plan to handle this in SW.
- Track based alignment using beams without field.
- Run plan being determined.
 Imperial College

London

Melissa Uchida

Tracker commissioning Data runs



- Readout commissioning no beam, random, cosmic and LED triggering to iron out VME based trigger logic – 2 days
- Calibration no beam runs with LED varying bias, discriminator and TDCs (latter two not Step 4 essential) – 4 days (bias) + 4 days (discriminators) + 4 days (timing) = 12 days
- Timing commissioning starting with LED and moving to beam to ensure integration and veto period align with arrival of particles – 5 days
- Alignment checks no field straight tracks to reconstruct actual alignment of tracker in reference frame 5 days

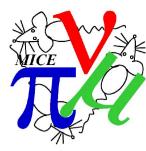
TOTAL: 24 days

Imperial College London

Melissa Uchida

Tracker Software

Imperial College London


Melissa Uchida

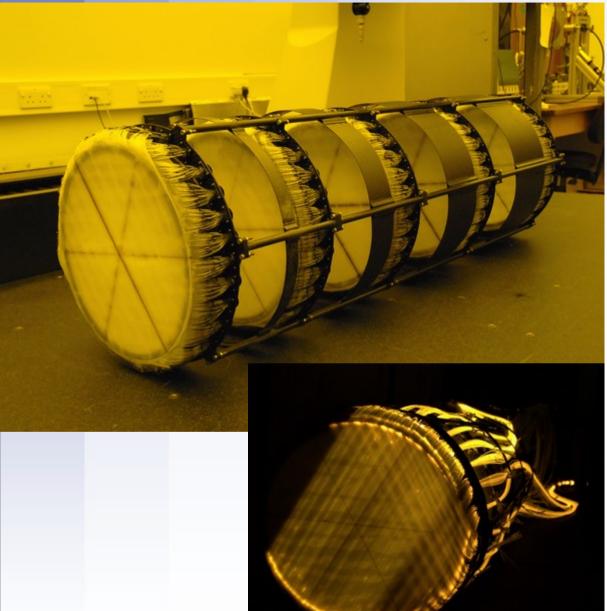
SW and C. Hunt's Emittance talk from parallels

- Full real geometry now in MC (inc He window and diffuser) thanks to the Chris' Heidt and Hunt.
- Kalman now probably in final form (E. Santos has finished), latest updates in trunk and will in be MAUS 0.9.2.
- MC noise algorithm updated.
- Emittance studies underway, seeing reasonable numbers for the emittance error.
- Online plots under are defined, agreed and in development.

For full details see A.Dobbs' SW and C. Hunt's Emittance talk from parallels

Software Next Steps

- Low p_t efficiency is poor, need to determine if and how much this is a problem ← A. Dobbs
- No trigger MC and pattern recognition not properly tested \leftarrow R. Bayes
- Real data unpacking broke between MAUS 0.7.5 and 0.7.6 \leftarrow D. Adey
- Finish implementing analysis framework ← A. Dobbs
- Get MC ADC smearing / finish noise work ← C. Heidt
- Handle shared spacepoints ← A. Dobbs
- Create online displays ← M.A. Uchida
- Track and spacepoint level efficiency studies \leftarrow A. Dobbs and C. Hunt


London

Tracker software paper in production (first draft to be circulated very soon) ← A. Dobbs
 Imperial College

Conclusions

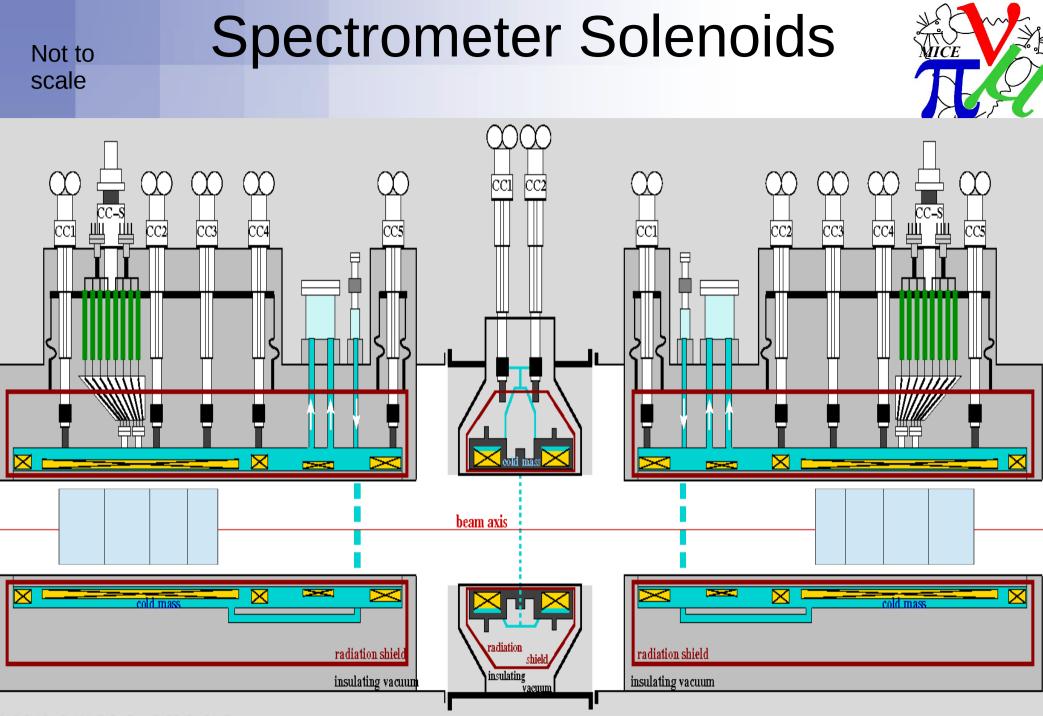
- Both Trackers installed and the USS and DSS in hall
- Diffuser fitted.
- Services are ready for us in the hall so that we can run cryostats.
- Commissioning has already begun and a lot of work is happening in November.
- Everything that can be QA'd or serviced has been/is being.
- Alignment work is in its early stages but will push forwards.
- Software in good shape and improving all the time.
- Emittance using software. Imperial College London

The Trackers

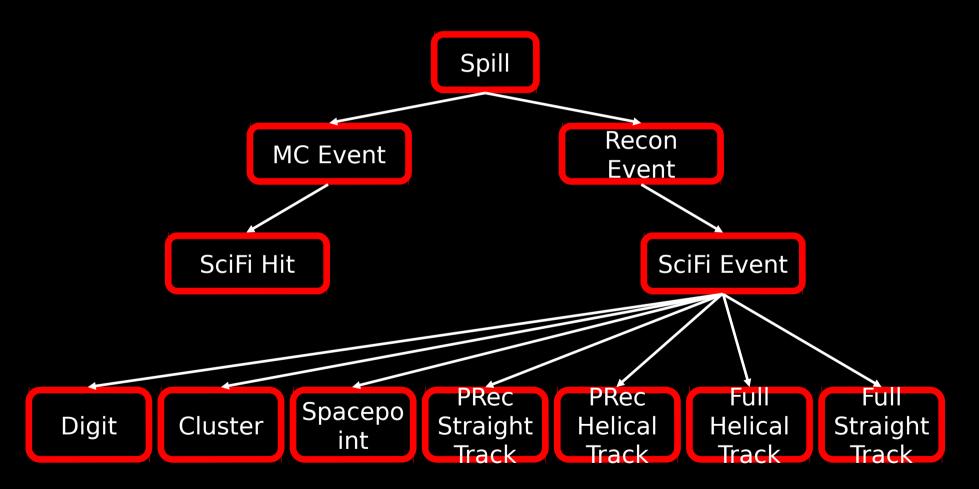
- Two scintillating fibre trackers, one upstream, one downstream of the cooling channel.
- Each within a 4T spectrometer solenoid.
- Each tracker is 110 cm in length and 30 cm in diameter.
- 5 stations per tracker at varying separations in z between 20 and 35 cm.
- LED calibration system.

Imperial College London

Melissa Uchida


The Trackers

- 350 μm scintillating fibres are glued into doublet layers with a thickness of 627μm.
- 7 fibres are grouped into a single readout channel. (This reduces the number of readout channels, while maintaining position resolution)
- 3 doublet layer fibre planes per station, each offset by 120 deg.
- Position resolution of 470 μm per doublet layer.
- Fibres readout by Visible Light Photon Counters, operating at liquid He temperatures.
- Digitised by FPGA based system from D0.

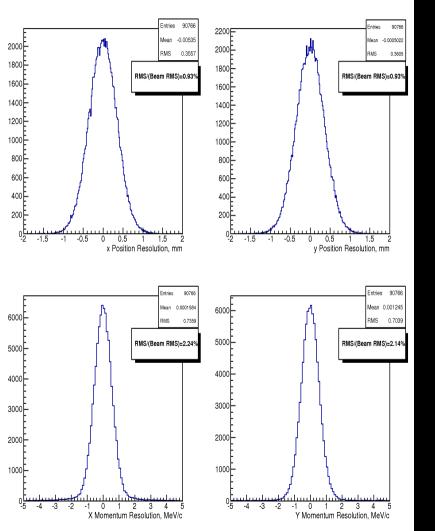

Imperial College London

Melissa Uchida

Hall Probe Positions Existing hall probe positions 12 o' New positions clock ¹² 0' clock 4.30 0' Station 1 clock Station 5 Imperial College London Melissa Uchida CM40 Tracker Plenary 27/10/14 27

Data Structure I

Data Structure II

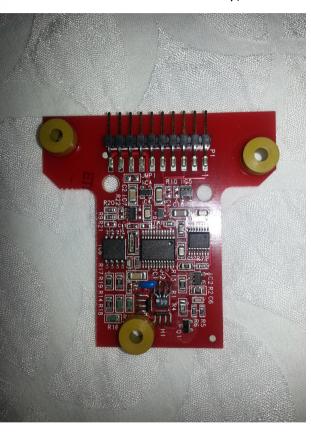

- Hits Monte Carlo objects formed when a particle traverse a detector
- Digits Detector response to a channel hit
- Clusters Groups of digits from adjacent channels in same plane
- Spacepoints 2 or 3 clusters from different planes on the same station, giving an (x,y) position
- PRec Tracks Tracks found by Pattern Recognition
- Full Tracks The final tracks produced by the Kalman fitter

Reconstruction

- Digitisation unpack the real data or digitise MC data
- Clustering look for adjacent channel hits and group them
- Spacepoints Reconstruction look for intersecting clusters on different planes
- Pattern Recognition use a linear least squares circle fit in x-y, and straight line fit in s-z to associate spacepoints with tracks
- Final track fit use a Kalman filter to smooth and filter the tracks, accounting with multiple coulomb scattering and energy loss

Kalman

- Resolution of the track parameters computed as the difference between MC truth and reconstruction values
- The distribution RMS to beam RMS ratio is shown
- Requirement of being able to measure 10% change in beam emittance to 1% accuracy means that transverse momentum resolution must be better than 10% of the beam RMS
- Results show we are well within this requirement!

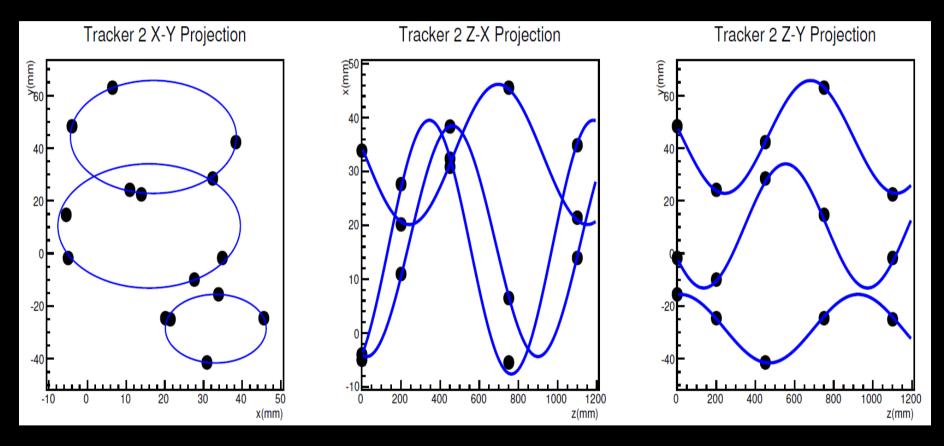

Magnetic Field Homogeneity

Inside solenoids SS data analysis under way by V. Blackmore.

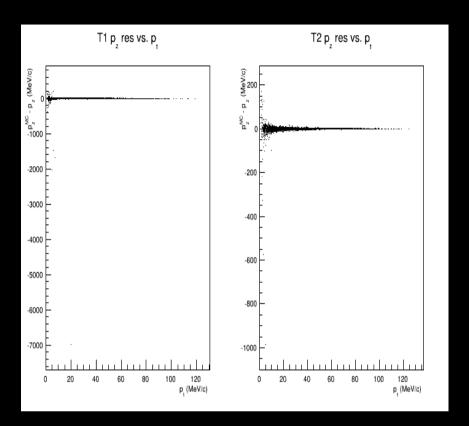
Inside trackers

Hall probes inside trackers.

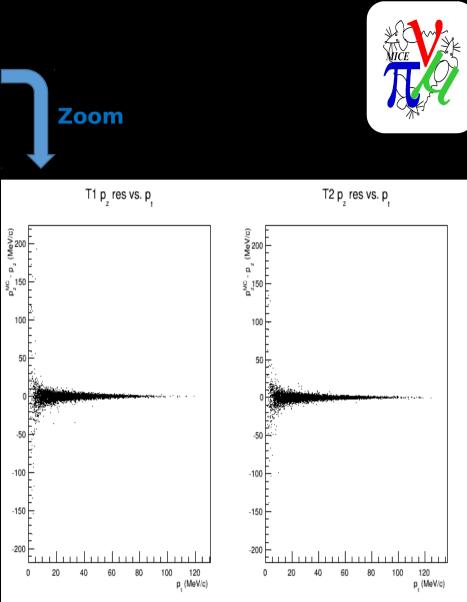
- We have 4 probes per tracker.
- 3 z and 3 rotational positions
- Software that will work with our C&M is in place but we will be working to develop and improve it.



Imperial College London


Melissa Uchida

Pattern Recognition


Helical Pattern Recognition tracks in T2, shown using a Reducer

Longitudinal momentum residual vs

transverse momentum

 Low pt tracks produce larger pz momentum residuals – in keeping with expectations

