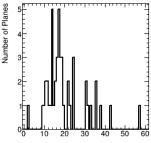
Electron Muon Ranger (EMR) Commissioning and operation

François Drielsma on behalf of the EMR Group

University of Geneva

October 27, 2014


47 ▶

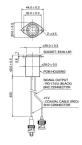
Single Anode PMT replacement (1)

Ageing **Philips XP2972** manufacturer characteristics:

- Useful diameter: Ø 23 mm
- Maximum response: 400 nm
- Sensitivity: $\sim 65~\mu {\rm A}/{\rm Im}$
- Gain: 3×10^6
- Time spread: $\sim 800~{\rm ps}$
- QE: 14.5 %
- ightarrow 30 years old
- \rightarrow Degraded photocathode
- \rightarrow Reduction of secondary emissions
- $\rightarrow \text{Gain loss}$
- \rightarrow Spurious pulses

SAPMT Plane Charge (mean), ADC counts

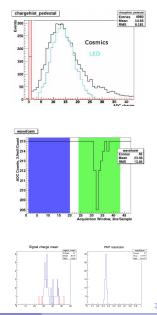
一日、


Single-Anode PMT replacement (2)

New **Hamamatsu R6427** manufacturer characteristics:

- Useful diameter: Ø 25 mm
- Maximum response: 420 nm
- Sensitivity: $\sim 100~\mu {\rm A/Im}$
- Gain: 5×10^6
- Time pread: $\sim 500~{\rm ps}$
- QE: 24 %
- ightarrow 56 PMTs (8 spares)

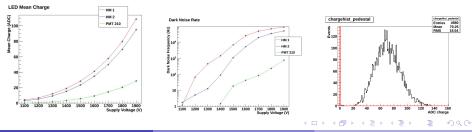
 \rightarrow Change done by UniGe technicians at RAL at the beginning of October 2014 (two days work)


SAPMT selection process

Test bench

- LED pulser tuned to MIP signal
- light-tight coupling with an SAPMT
- trigger on the pulser
- acquisition of 150000 signals with a 10kHz clock
- Signal integration
- Measurement of the average charge

Results


- Much higher gain and efficiency than the Philips SAPMTs
- Rejection of the lowest and highest averages of the sample (8 spares)
- Selection of the 48 SAPMTs with central averages

Comparaison between old and new SAPMTs

Measured mean charge for MIP signals:

- acquisition of 150k MIP-like signals in the range (1100-1900)V
- measurement of the mean charge for each setting
- $\rightarrow \overline{Q_{Hm}} \gg \overline{Q_{Ph}}$ over the whole range Measured level of dark noise:
 - recording of the DN frequency over 5 minutes in the same range
 - measurement of the average DN frequency for each setting
- \rightarrow DN 2 orders of magnitude higher for Hamamatsu PMTs
- \rightarrow Not to worry, as the DN/Signal separation is ensured

EMR Commissioning and operation

Voltage divider replacement

Old voltage divider developed in house:

- Operating voltage: 1800V
- Nominal current: 700 μA

New Hamamatsu E2624-14 voltage divider:

- Operating voltage: 1500V
- Nominal current: 314 μA
- ightarrow 57 VDs (9 spares)

Selection process:

- Power on HV with the same SAPMT for each VD
- Monitor current and DN
- \rightarrow All functional, random selection of 48

SAPMT implementation

Old set up

-

New EMR Elements Installation

New elements:

- 47 U rack to replace current one
- AC fan system (back of the rack, top of the rack, EMR box)
- Remote controlled AC power supply
- HVPSU (photomultipliers)
- LVPSU (trigger distribution boards, LED driver, fans)
- New VME (and NIM) crate(s)

Implementation:

- New design and layout approval (RAL) (\checkmark)
- Installation of remote control switch, connection to grid (RAL) (\checkmark)
- Rack repackaging (UniGe) (✓)
- Cables rewiring (UniGe) (✓)
- Test and commissioning (UniGe) (X)
 - \rightarrow Finalized after the upgrade of the SAPMT

3

New 47U EMR rack

- Implementation of all the elements in a single rack
 → Scope, DAQ computer, NIM crate, trigger patch
 panel, signal patch panel, VME crate, HVPSU,
 remote controlled switch, LVPSU1, LVPSU2
- Replace the wheels by fixed feet
- Cables rerouted under the platform
- Plexiglas panel to protect the front of the rack
- Shift of the back door to fit the HVPSU
- Positioned at the beam dump

< 一型

Remote controlled power switch

Specifications of the WTI VMR-HD4D30-12B C19:

- Dual 30 Amp In-Feeds
- 12 power outlets (2×LVPSU, HVPSU, VME, NIM, PC, Scope, Ethernet/USB switch, 3×Fans)
- Thorough ssh, telnet and html control (Individual On/Off switches and current monitoring)

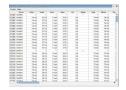
Managed Power Controller		Site ID: (undefined)
PLUG	I NAME	STATUS DELAY DEF PRI
A1	InfeedA Outlet1	ON 0.5 S ON 1
A2	InfeedA_Outlet2	ON 0.5 5 ON 2
A3	InfeedA Outlet3	ON 0.5 5 ON 3
A4	InfeedA Outlet4	ON 0.5 5 ON 4
A5	InfeedA_Outlet5	ON 0.5 5 ON 5
A6	InfeedA_Outlet6	ON 0.5 5 ON 6
B1	InfeedB_Outlet1	ON 0.55 ON 7
B2	InfeedB_Outlet2	ON 0.5 5 ON 8
B 3	InfeedB_Outlet3	ON 0.5 5 ON 9
B4	InfeedB_Outlet4	ON 0.5 5 ON 10
B5	InfeedB_Outlet5	ON 0.5 5 ON 11
B6	InfeedB_Outlet6	ON 0.5 5 ON 12

PARAMETER			VALUE	Total Plug Current:	7.4A
		+-		Total Plug Power:	1742W
	ne Input A)		3.8A	CPU Power:	12W
Voltage (Li	ne Input A)		236V	Power Factor:	1.00
Power (Li	ne Input A)		896W	Power Efficiency:	100%
Current (Li	ne Input B)		3.6A		
Voltage (Li	ne Input B)		235V		
Power (Li	ne Input B)		846W		
Current (Fu	se B1-B2)				
Current (Fu	ise B3-B4)				
Current (Fu	ise B5-B6)				
Current (Fu	ise A1-A2)				
Current (Fu	ise A3-A4)				
Current (Fu	ise A5-A6)				
Temperature			78F		

High Voltage Power Supply Unit (HVPSU)

Specifications of the CAEN SY4527:

- 2 power supplies (Primary + Booster), 1200W
- Basic version, no control interface on the crate
- 5 HVPS boards (5×24=120 ch., 24 spare ch.)
- 0-2500V HV range, 0-500 μ A current range
- Thorough html ctrl&mon (HiVoCS)


Use of the HVPSU for the EMR:

• 48 MAPMT ch. (700V), 48 SAPMT ch. (1500V) Issue at this point

• The HV trips constantly, Pierrick investigating

Low Voltage Power Supply Units (LVPSUs) Specifications of the CAEN SY8800:

1kW power supply

• Thorough local and remote ctrl&mon (telnet) EMR LVPSU 1:

- One 2-7V ch. (Fan-out boards, FEBs A&B, DBBs)
- Two 7-16V ch. (Internal EMR box fans)
- Two 20-28V ch. (LED Driver)

EMR LVPSU 2 (future):

• Three 2-7V ch. (FEBs A, FEBs B, DBBs)

Issue at this point

• The 20-28V ch. in LVPSU1 are not working

¢.,		6. S1	2000		٤,	uletch	110	Low Vo	te;	e PS	V1.01
		Status					Ten	perature	31	040	
	Vec						Tem				
			et			VHat					
CHI		05.				04.91		027.30			04:
		-07				00.00		000.00		011	Cfc
CHO		-28.	00 V	000.52		00.03		099.00		011	OK:
			00 V	601.00		00.00		000.00			06

VME crate

Specifications of the CAEN VME8100:

- 21 slot for 6U x 160mm VME modules
 - 1 Ctrl, 1 I/O, 8 VRB, 3 VCB, 6 V1731 (fADC)
- Available with VME64, VME64X
- Short circuit, overvoltage and temperature protection
- Ethernet interface (telnet) for remote ctrl&mon

	Status	OK OK	PS Temp	erature	41 Deg		
Fan2	1680 Rpm 1650 Rpm 1650_Rpm	OK OK	FU Temp	erature	25 Deg		
	VSet	ISet	0vP	UvP	VMon	IMon	Status
*5V *12V *3.3V -12V	05.00 12.00 03.32 12.00	V 023.00 P V 110.00 P	05 X 05 X	05 % 05 % 05 % 05 %	05.01 V 12.00 V 03.27 V 12.00 V	044.50 A 008.85 A 035.00 A 008.80 A	Ok Ok Ok Ok
	Crate [ON	Reset A		an Spee	i - Fan		Ouit

Replacement of the VHDC

Reasons for their replacement:

- Upcoming shifts of the EMR location (US then DS)
- Easily damaged flat VHSDC
- Critical part of the EMR to configure the FEBs

New choice of cables:

- 3M Round, Shielded Jacketed, Disc. Wire Cable
- Interface boards to connect the cables to the VHDCI
- Soldering done at RAL by the EMR group (4 15m cables, 1 spare)
- \rightarrow Much sturdier cables that can withstand stress
- \rightarrow One of the cable is malfunctioning, under investigation

Additional Patch pannel

20 BNC feed-through connectors to accommodate the 8 control room signals and 3 EMR control signals:

Control Room

- in Start Of Spill (SOS)
- in Particle Trigger (PT)
- in DAQ Trigger (DAQT)
- in End Of Spill (EOS)
- in Spill Gate (SG)
- out SOS busy (SOSB)
- out DAQT busy (DAQTB)
- out EOS busy (EOSB)

EMR Control

out Spill Gate (SG)

out Particle Trigger (PT)

out LED Trigger (LEDT)

Temperature and humidity sensors

Specifications of the Yocto-Meteo:

- Refresh frequency: 1Hz
- \bullet Humidity sensor: (0 100) \pm 0.8 %
- \bullet Pressure sensor: (500 1150) \pm 0.8 mbar
- $\bullet\,$ Temperature sensor: (-40 125) \pm 0.2 $^\circ\text{C}$
- Libraries for main languages (Cpp, python, etc.)

Purpose for the EMR

- Monitor these variables in the EMR box and the rack
- Study their influence on the electronics

PMT High Voltage Optimization

Situation after the SAPMT change:

- Fully commissioned SAPMTs
- All the Multi-anode PMs set to the same voltage
- The PMTs are non-uniform and their response can vary significantly
- \rightarrow Need for a high voltage scan

\rightarrow Planned after rack and SAPMTs installation, Important $_{\text{Missed plane ratio}}$

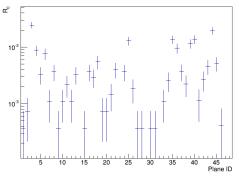
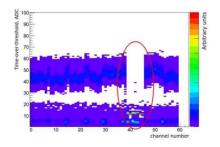


Fig: Probability of given plane to not record a single signal in the MAPMT when a 350 MeV/c muon goes through it. Some of the planes have an efficiency under 99 %; their voltage needs to be adjusted.

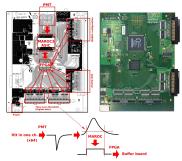
October 27, 2014


17 / 23

Faulty Front End Boards Investigation

Some of the spare dedicated FEBs exhibit faulty behaviours:

- High levels of noise
- No signal recorded at the right Time over Threshold
- Electronics flaw
- \rightarrow Needs to be investigated to see at which stage the signal is lost \rightarrow Fixing them will provide much required additional spares
- \rightarrow 1 month work, Important



Front End Board ASIC Optimization

The ASIC used in the EMR is a Multi-Anode ReadOut Chip (MAROC):

- 64 inputs/outputs
- Shapes the signal and measures a Time over Threshold
- Fast response
- Tunable pre-amplifier gain up to a factor 4 with 6 % accuracy
- Tunable threshold value

- \rightarrow Hasn't been studied extensively
- \rightarrow Study of the threshold influence to increase acceptance
- \rightarrow Correction of the MAPMT non-uniformity using the pre-amp
- \rightarrow 2 month work with a test bench at CERN, Secondary

EMR code integration into MAUS

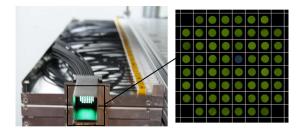
Essential parts of the EMR code to be integrated in MAUS

- EMRPlaneHits map modified to accommodate two additional reconEvents (noise + decays) and fill them (</
- EMRMCDigitization entirely in MAUS (version 2.1) (\checkmark)
- Modication of the **data structure** implemented (\checkmark)
- Data Processors adapted (✓)
- New **tests** for the EMRPlaneHits and EMRMCDigitization (\checkmark)
- EMRRecon integrated, <u>needs to be revised</u> (\checkmark)
- Test for EMRRecon (X)

\rightarrow Almost completely functional

EMR DAQ

A few standalone features of the EMR need to be integrated in the DAQ


- Calibration of the fADC pedestal after power cycles (\checkmark)
- MAROC configuration after power cycles (✓)
- 3 distinct modes of DAQ
 - ► Beam (✓)
 - Cosmic (X)
 - ► LED pulser (X)

Standalone code

- Use LED monitoring to adjust PMT gains (analogue devices are sensitive to environmental changes, B fields, power cycles, etc.) (X)
- Calibration Run (1 week of cosmic data taking after major hardware updates, finely tuned by LED monitoring) (✓)
- \rightarrow The EMR can be included in every run

EMR Operations

- Write EMR operation instructions
- Write EMR technical note
 - Cable tags, patch panels map
 - Hardware IDs
 - High Voltage mapping
 - DAQ configurations
 - \rightarrow 1 month work, Important
- Set-up LED monitoring of the PMT gain
 - \rightarrow Stalled by the malfunctioning of LVPSU 1, Important.

___ ▶

EMR status summary

EMR hardware upgrade in progress

- SAPMT updated in commissioned, upcoming MICE-DET-NOTE (\checkmark)
- New 47U rack, network operated power switch ightarrow functional (\checkmark)
- New HVPSU \rightarrow cannot be turned on (X)
- New LVPSU \rightarrow faulty channel (\bigstar)
- New CAEN VME crate \rightarrow functional (\checkmark)
- VHDC replacement \rightarrow faulty cable (\bigstar)
- New patch panel and environmental sensors \to functional (\checkmark) Future EMR hardware analyses to be conducted
- PMT HV scan, faulty FEB investigation, FEB ASIC optimization (x) EMR Software integration in MAUS
 - Days away from completion ($\sim \checkmark$)
- EMR DAQ and manuals
 - EMR conf. operational in DATE, could use a few additions (\checkmark)
 - EMR operation instructions and technical note \rightarrow to be done (X)

23 / 23