Thermal Charm production in Pb+Pb @ 40 TeV

Yungpen Liu¹, Che Ming Ko² ¹ Tianjin University^{, 2}Texas A&M University

 \Box Introduction \square Charm production in pQCD **□ Charm production in QGP** \Box Charm production in Pb+Pb $@$ 40 TeV \square Summary

Why is understanding charm production important in Pb+Pb @ 40 TeV?

- Charmonium production: Braun-Munzinger, Thews, Greco ….
	- Yield depends quadratically on the charm quark number in statistical, kinetic, and coalescence models
	- Enhanced charm production could lead to possible charmonium enhancement instead of suppression so far observed at RHIC and LHC
- § Charmed exotics production: Lee, Yasui, Liu & Ko, EPJC 54, 259 (2008); Cho et al., PRL 106, 212001 (2011); PRC 84, 064910 (2011)
	- Consideration of the color-spin interaction leads to possible stable charmed tetraquark meson $T_{\rm cc}(\bar{\rm udc\bar{c}})$ and pentaquark baryon $\Theta_{\rm sc}$ (udusc)
	- Enhanced charm production in Pb+Pb @ 40 TeV makes FCC a possible factory for studying charmed exotics

Four stages of charm production in HIC

- Direct production: Meuller, Wang (92); Vogt (94); Gavin (96) …..
	- Mainly from initial gluon fusions
	- About 3 pairs in mid-rapidity at RHIC (from STAR collaboration)
	- About 20 pairs in mid-rapidity at LHC $@$ 2.76 TeV
	- About 40 pairs in Pb+Pb $@$ 40 TeV
- Pre-thermal production: Lin, Gyulassy (95), Levai, Meuller, Wang (95)…..
	- Not important based on minijet gluons
	- Production from initial strong color field?
- § Thermal production from QGP: Levai & Vogt (97), Zhang (08)
	- Important if initial temperature of QGP is high
- § Thermal production from hadronic matter: Cassing et al. (99), Liu & Ko (02)
	- Such as $\pi N \rightarrow \Lambda_c D$ and $\rho N \rightarrow \Lambda_c D$
	- Expect small effect on charm production in HIC

Charm production in pQCD

- **Example 2** Leading-order diagrams for charm production
	- 1) $q\overline{q} \rightarrow c\overline{c}$ \mathbf{u} Jellel $\widetilde{\widetilde{g}}$ 2) gg \rightarrow cc с

- Next-Leading-order diagrams for charm production
	- 1) $q\overline{q} \rightarrow c\overline{c}g$

 $+ \cdots$

■ Virtual corrections to leading-order diagrams

1) $q\overline{q} \rightarrow c\overline{c}$

6

Charm quark production cross sections

P. Nason, S. Dawson & R.K. Ellis, NPB 303, 607 (1988)

Next-to-leading order generally gives a larger cross section than the leading order except in qqbar annihilation at high energies.

Thermal averaged charm production cross sections

particularly in the gg channel. Slightly smaller if using massless partons⁸ Thermal averaged cross sections are larger in next-to-leading order,

Charm production rate Zhang, Liu & Ko, PRC 77, 024901 (2008)

Production rate increases exponentially with temperature

Charm production from three-gluon interaction ggg→cc

Determine rate for $ggg \rightarrow c\bar{c}$ from $c\bar{c} \rightarrow ggg$ via detailed balance

$$
R \propto \frac{1}{3} \int \prod_{i=1}^{5} d^3 p_i f_i(p_i) \Big| M_{ggg \to c\overline{c}} \Big|^2 \delta^{(4)}(p_1 + p_2 + p_3 - p_4 - p_5) \propto \Big\langle \sigma_{c\overline{c} \to ggg} v \Big\rangle n_c^{eq} n_{\overline{c}}^{eq}
$$

Charm production in Pb+Pb @ 40 TeV

Fire cylinder evolution: Bjorken's boost invariant expansion, with local density proportional to the thickness function $T_{AR}(\mathbf{x}_T)$, and entropy conservation

$$
s(\mathbf{x_T},\tau) = \tfrac{\tau_0}{\tau} s(\mathbf{x_T},\tau_0), \quad s(\mathbf{x_T},\tau) = s(\mathbf{0},\tau) \tfrac{T_{AB}(\mathbf{x_T})}{T_{AB}(\mathbf{0})}
$$

- § Equation of state: Non-interacting massless parton for QGP and massive hadrons for hadronic matter with a bag constant such that phase transition temperature T_c = 165 MeV
- Initial charm quark number: About 43 pairs from PYTHIA, corresponding to 0.026 pairs per p+p collision or

$$
\frac{d\sigma_{pp}^{c\bar{c}}}{dy}(\sqrt{s} = 40 \text{ TeV}) = 1.4 \text{ mb}
$$

compared to

$$
\frac{d\sigma_{pp}^{c\bar{c}}}{dy}(\sqrt{s} = 2.76 \text{ TeV}) = 0.62 \text{ mb}
$$

§ Transverse energy

$$
\frac{dE_T/d\eta}{0.5N_{\text{part}}} = 0.46 \left(\frac{\sqrt{s_{\text{NN}}}}{1 \text{ GeV}}\right)^{0.4} \text{ GeV} \quad \sigma_{pp}^{\text{in}} = 8.20 \ln \frac{\sqrt{s}}{1.436 \text{ GeV}} \text{ mb}
$$

 $\rightarrow N_{\text{part}}(40 \text{ TeV}) \approx 408 \rightarrow \frac{dE_T}{d\eta}(40 \text{ TeV}) \approx 6,500 \text{ GeV}$

Temperature at center $(x_T = 0)$ of firecyclinder at $T_f = 5$ fm/c

$$
\int d\mathbf{x}_T \epsilon(s(\mathbf{x}_T, \tau_f)) = \frac{1}{\tau_f} \frac{dE_T}{d\eta} \to T(\mathbf{x}_T = \mathbf{0}, \tau_f) \approx 350 \text{ MeV}
$$

■ Time evolution of temperature at center: determined from entropy conservation through EOS

• Time evolution of charm quark number (not including $ggg \rightarrow c\bar{c}$ **)**

$$
\partial_{\tau}(\tau n_c) = \tau R \left[1 - \left(\frac{n_c}{n_c^{eq}} \right)^2 \right], \quad n_c^{eq} = \frac{3Tm_c^2}{\pi^2} K_2(m_c/T)
$$

• Enhancement: \sim 50% for QGP thermalization time τ_0 =0.2 fm/c, ~ 35% for τ_0 =0.4 fm/c, ~ 20% at τ_0 =0.6 fm/c

Summary

- § Thermal charm production rate increases exponentially with the temperature of QGP.
- Next-to-leading order enhances thermal production rate by more than a factor of 2.
- Charm production from three-gluon interactions is important if gluons are massless.
- § Thermal charm production may be enhanced by 50% in Pb+Pb $@$ 40 TeV, from 43 pairs to 65 pairs.
- § Understanding thermal charm quark production is important for understanding charmonium production in HIC.
- \bullet Pb+Pb ω 40 TeV provides the possibility to search for charmed exotics such as charmed tetraquark mesons and pentaquark baryons.