Simplified models for the DM production at the LHC in Run-2

David Šálek

(Nikhef / University of Amsterdam)

based on the discussions during the DM@LHC Workshop in Oxford:

http://indico.cern.ch/event/312657/overview

workshop summary by Tim Tait:

http://indico.cern.ch/event/312657/session/4/contribution/31/material/slides/0.pdf

Direct detection

- Neutrino floor is getting near.
 - Measurement of the direction is needed in order to overcome this background (experimentally challenging).
- The message for Dark Matter requires interpretation of the experimental data.
- Be aware of uncertainties and assumptions such as velocity distribution and nuclear form factors.

DM production at the LHC

mono-jet

ATLAS-CONF-2012-147

• Limits on the suppression scale of the EFT operators are set assuming full EFT validity.

ATL-PHYS-PUB-2014-007

- Simplified models with Z'-like mediators reveal that
 - EFT limits are conservative in the resonant region.
 - EFT limits are not valid for light mediators.

EFT vs. simplified models

21 - 26 July 2014

1409.2893

EFT validity

LHC

- LHC keeps providing new results from Run-1.
- The ways of the result interpretations improve and reflect the recent advancements (and criticism) on the theory side.
- Plans for the DM interpretations of Run-2 results?

Two recent white papers

 Simplified Models for Dark Matter and Missing Energy Searches at the LHC <u>http://arxiv.org/abs/1409.2893</u>

http://indico.cern.ch/event/312657/session/4/contribution/52/material/slides/1.pdf

Simplified Models for Dark Matter and Missing Energy Searches at the LHC

Jalal Abdallah,¹ Adi Ashkenazi,² Antonio Boveia,³ Giorgio Busoni,⁴ Andrea De Simone,⁴ Caterina Doglioni,⁵ Aielet Efrati,⁶ Erez Etzion,² Johanna Gramling,⁵ Thomas Jacques,⁵ Tongyan Lin,⁷ Enrico Morgante,⁵ Michele Papucci,^{8,9} Bjoern Penning,^{3,10} Antonio Walter Riotto,⁵ Thomas Rizzo,¹¹ David Salek,¹² Steven Schramm,¹³ Oren Slone,² Yotam Soreq,⁶ Alessandro Vichi,^{8,9} Tomer Volansky,² Itay Yavin,^{14,15} Ning Zhou,¹⁶ and Kathryn Zurek^{8,9}

 Interplay and Characterization of Dark Matter Searches at Colliders and in Direct Detection Experiments

http://arxiv.org/abs/1409.4075 http://indico.cern.ch/event/312657/session/4/contribution/18/material/slides/0.pdf

> Interplay and Characterization of Dark Matter Searches at Colliders and in Direct Detection Experiments

Sarah A. Malik,^{*a*} Christopher McCabe,^{*b,c*} Henrique Araujo,^{*a*} Alexander Belyaev,^{*d,e*} Céline Bœhm,^{*b*} Jim Brooke,^{*f*} Oliver Buchmueller,^{*a*} Gavin Davies,^{*a*} Albert De Roeck,^{*g,h*} Kees de Vries,^{*a*} Matthew J. Dolan,^{*i*} John Ellis,^{*g,j*} Malcolm Fairbairn,^{*j*} Henning Flaecher,^{*f*} Loukas Gouskos,^{*k*} Valentin V. Khoze,^{*b*} Greg Landsberg,^{*l*} Dave Newbold,^{*f*} Michele Papucci,^{*m*} Timothy Sumner,^{*a*} Marc Thomas^{*d,e*} and Steven Worm^{*e*}

Simplified models

• What is the minimal full set of simplified models allowing for reinterpretations?

• s-channel with gluons in the initial state

Simplified models

- How can we best show the results with simplified models?
- How can we best compare to the DD and ID results?

Input from Tim

T-Channel

- A simple t-channel model selects either uR, dR, or qL quarks to interact with.
 - More than one of the above is fine.
- MFV tells us the mediators come in flavor triplets, just like the SM quarks. (And just like the MSSM squarks)
 - (Alternative: flavored dark matter)
- The first two generation mediators will have very close to degenerate masses and couplings.
- The third generation mediators can have different masses and mixings.

Parameters:
$$\{M_{\rm DM}, M_{(1,2)}, M_3, g_{(1,2)}, g_3\}$$

The width cannot be chosen as a free parameter if the theory is UV-complete.

In the very least it is bounded.

David Šálek

Input from Tim

S-Channel:Scalar

- A singlet scalar could be real or complex.
- Scalar couplings are chirality flipping. The scalar mediator consistent with MFV couples proportionally to Yukawa couplings.
- In the SM, the only relevant parameters are the masses, and the degree of mixing with the SM Higgs through electroweak breaking.
- If the SM is extended to a two (or more) Higgs doublet model, the coupling to up-quarks, down-quarks, and/or leptons become decorrelated.
 - Inside each sector, they still go like Yukawa couplings.

Parameters: $\{M_{\text{DM}}, g_{\text{DM}}, M_S, \theta_H\}$ or maybe $\{M_{\text{DM}}, g_{\text{DM}}, M_S, g_u, g_d, g_\ell\}$

Input from Tim

S-Channel :Vector

- Vector models have more parameters consistent with MFV.
- uR, dR, qL, eR, IL all have family-universal but distinct charges, as does H.
- We would like to be able to write down the SM Yukawa interactions.
- Quarks need not have universal couplings.
- There could be kinetic mixing with $U(I)_{Y}$.
- There is a dark Higgs sector. It may not be very important for LHC phenomenology.
- Gauge anomalies must cancel, which also may not be very important for LHC phenomenology.

Parameters: $\{M_{\text{DM}}, g, M_{Z'}, z_q, z_u, z_d, z_\ell, z_e, z_H, \eta\} + \dots$

Future?

- The EFT approach is heavily criticised for being used at the LHC energies.
- There is huge variety of theories of Dark Matter.
- Simplified models are in-between and seem to be an optimal way forward.
- The experimental community needs to converge on a common set of simplified models soon (Run-2 is just around the corner).
 - which models/generators?
 - which parameter ranges to consider? (e.g. restrictions from thermal relic)
 - Combinations of different LHC analyses will be relevant with simplified models (e.g. mono-jet + di-jet using a Z' model).

next DM @ LHC Workshop

GRavitation AstroParticle Physics Amsterdam

exact dates to be announced

Looking forward to seeing you in Amsterdam!

Massimo Catarinella <u>CC BY-SA 3.0</u>

extra material

mono-X searches

Effective Field Theory

- simple benchmark models
 - couplings to quarks and gluons
 - couplings to vector bosons
- only two free parameters: m_X, suppression scale M*
- validity concerns at the LHC energies

Simplified models

- UV-complete
- s-channel or t-channel
- parameters: m_X, i liator mass and width, couplings
- Higgs-portal DM

Name	Initial state	Туре	Operator
D1	qq	scalar	$rac{m_q}{M_\star^3}ar{\chi}\chiar{q}q$
D5	qq	vector	$rac{1}{M_{\star}^2}ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$
D8	qq	axial-vector	$rac{1}{M_{\star}^2}ar{\chi}\gamma^{\mu}\gamma^5\chiar{q}\gamma_{\mu}\gamma^5q$
D9	qq	tensor	$rac{1}{M_{\star}^2}ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$
D11	gg	scalar	$rac{1}{4M_{\star}^3}ar{\chi}\chilpha_s(G^a_{\mu u})^2$

