IPhT CEA-Saclay Marco Taoso

Wino-like Minimal Dark Matter at colliders

Based on 1407.7058 with Marco Cirelli and Filippo Sala

Amsterdam-Paris-Stockholm meeting Amsterdam 29-09/01-10 2014

Minimal Dark Matter

Minimalistic approach: add to SM an extra gauge multiplet and search for assignments giving a viable DM candidate

Requirements for DM: stable, neutral and allowed by DM searches

$$\mathscr{L}_{\text{SM}} + c \begin{cases} \bar{\mathcal{X}}(i\not D + M)\mathcal{X} & \text{when } \mathcal{X} \text{ is a spin } 1/2 \text{ fermionic multiplet} \\ |D_{\mu}\mathcal{X}|^2 - M^2|\mathcal{X}|^2 & \text{when } \mathcal{X} \text{ is a spin } 0 \text{ bosonic multiplet} \end{cases}$$

Stable for large enough repr., 5 (7) for fermions (scalars), renormalizable and dim 5 operators do not lead to fast decays

Constraints from DM searches: no colored, Y=0 to avoid large Z-mediated SI scattering cross section with nuclei. Pure SU(2) multiplets

Minimal Dark Matter

From Cirelli, Strumia 0903.3381

Quantum numbers		DM can	DD	Stable?	
$\mathrm{SU}(2)_{\mathrm{L}}$	$\mathrm{U}(1)_Y$	Spin	decay into	bound?	
2	1/2	S	EL	×	×
2	1/2	F	EH	×	×
3	0	S	HH^*		×
3	0	F	LH		×
3	1	S	HH,LL	×	×
3	1	F	LH	×	×
4	1/2	S	HHH^*	×	×
4	1/2	F	(LHH^*)	×	×
4	3/2	S	HHH	×	×
4	3/2	F	(LHH)	×	×
5	0	S	(HHH^*H^*)		×
5	0	F	_		
5	1	S	$(HH^*H^*H^*)$	×	×
5	1	F	_	×	
5	2	S	$(H^*H^*H^*H^*)$	×	×
5	2	F		×	$oxed{ }$
6	1/2, 3/2, 5/2	S		×	
7	0	S	_		
8	$1/2, 3/2 \dots$	S	_	×	

DM mass fixed for a thermal relic to match measured DM abundance. Mass in the multi-TeV range (10 TeV for 5-plet and 25 TeV for 7-plet)

Triplet DM candidate

Quantum numbers			DM can	DD	Stable?
$\mathrm{SU}(2)_{\mathrm{L}}$	$\mathrm{U}(1)_Y$	Spin	decay into	bound?	
2	1/2	S	EL	×	×
2	1/2	F	EH	×	×
3	0	S	HH^*	√	×
3	0	F	LH	$\sqrt{}$	×
3	1	S	HH,LL	×	×
3	1	F	LH	\parallel ×	×

Fermionic triplet **stable** if L or B-L is respected (or at least matter parity)

Lightest component is **neutral** Mass splitting at 2 loop $\Delta M = 164.5 \pm 0.5$ MeV

Ibe et al. 1212.5989

Capture low-energy pheno of SUSY models with WINO LSP and heavy scalars


Other remarks on the EW multiplets

- It correct the running of Higgs quartic coupling stabilizing the EW vacuum

Do not introduce fine-tuning of Higgs mass

$$\delta m^2 = rac{M^2}{(4\pi)^4} \, rac{n(n^2-1)}{4} \, g_2^2 \, \Big(6 \ln rac{M^2}{ar{\mu}^2} - 1 \Big)$$

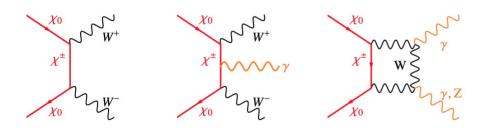
Chao Gonderinger Ramsey-Musolf 1210.0491

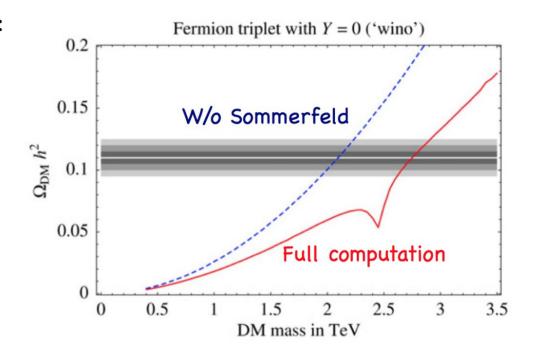
 $M_\chi \lesssim 1.0 \sqrt{\Delta}$ TeV to have less than $(100/\Delta)$ % fine-tuning

[5-plet
$$M_\chi \lesssim 0.4\sqrt{\Delta}$$
 TeV, 7-plet $M_\chi \lesssim 0.06\sqrt{\Delta}$ TeV]

Farina, Pappadopulo, Strumia 1303.7244

- Helps with gauge-coupling unification

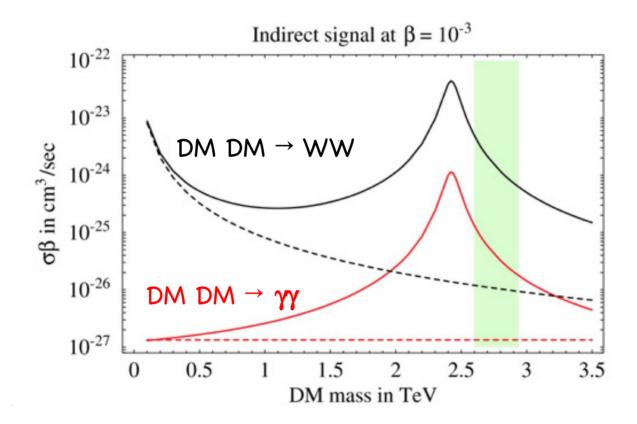

Frigerio, Hambye 0912.1545


Relic abundance

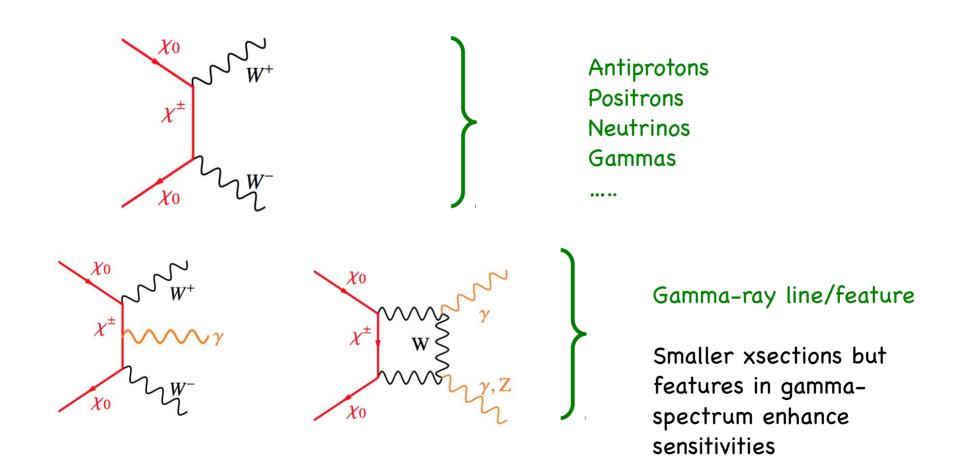
Dominant annihilation channel is WW Relic abundance calculation should include:

Coannihilations with charged state in the multiplet

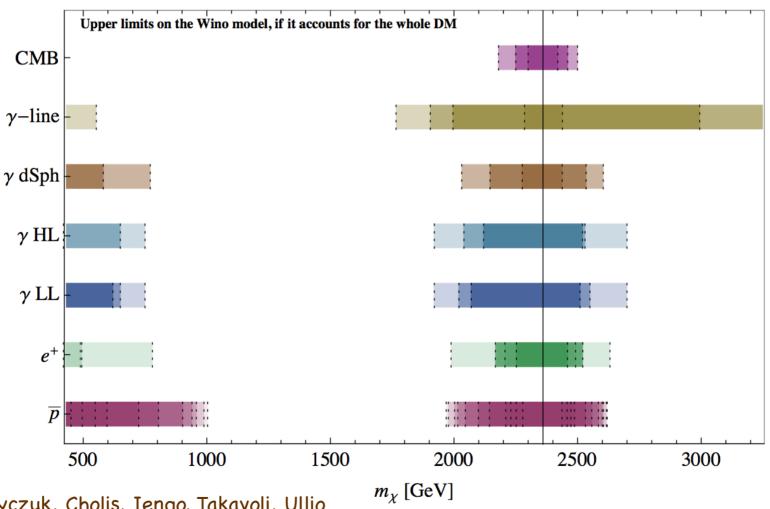
Sommerfeld corrections



Correct abundance for M around 3 TeV.
Under-abundant (over-abundant) for a lighter (heavier) triplet
All masses possible for non-thermal production


Indirect searches

Sommerfeld effect enhance annihilation cross-section at low velocities, i.e. for DM at present epoch inside galaxies

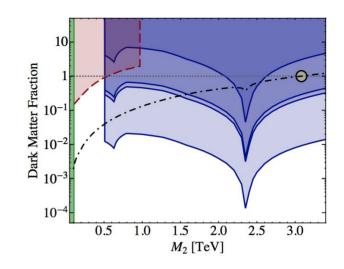

Indirect searches

Sommerfeld effect enhance annihilation cross-section at low velocities, i.e. for DM at present epoch inside galaxies

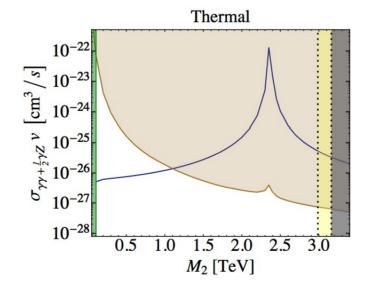
Indirect detection bounds

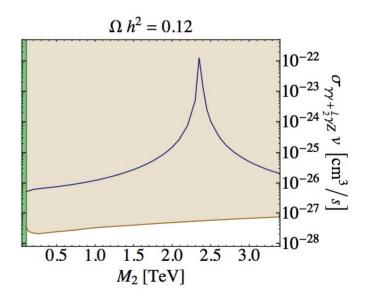
Bounds depend on astrophysical assumptions like DM density profiles, cosmic-rays propagation... Shading corresponds to different choices

From Hryczuk, Cholis, Iengo, Takavoli, Ullio 1401.6210


See also Cohen et al. 1307.4082 Fan, Reece 1307.4400

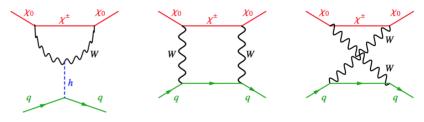
Indirect detection bounds

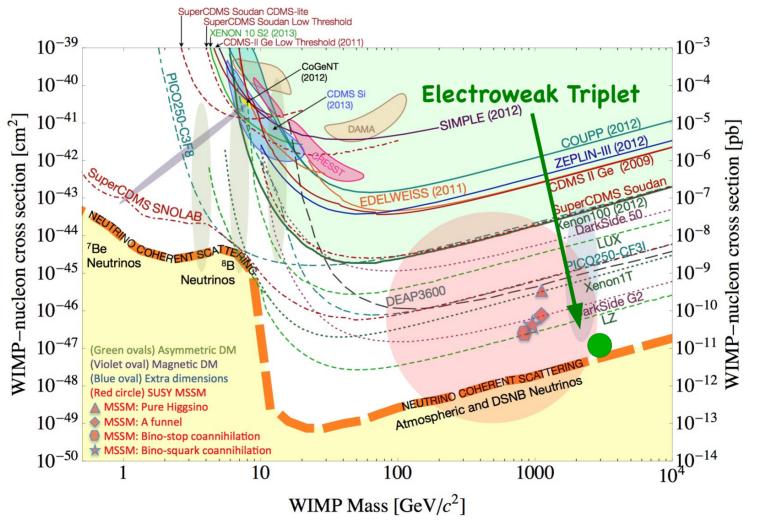

Thermal WINO: current bounds


Shading different profiles

Dod-dashed: cross section for thermal WINO

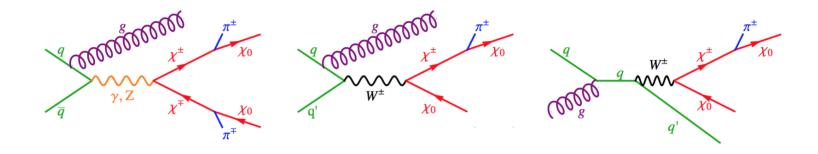
Prospects for CTA





Direct detection

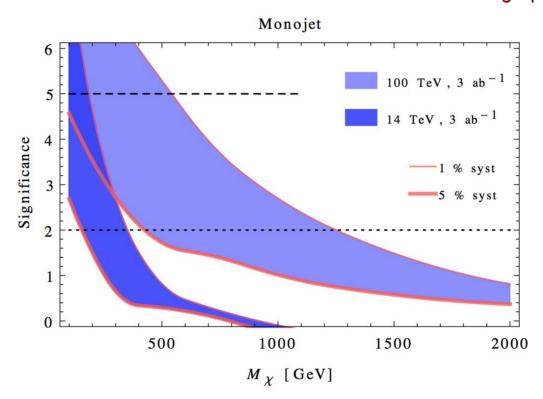
Cross-section $\sigma_{_{SI}}$ = 1.3 $10^{\text{-47}}~\text{cm}^{\text{2}}$


Hill, Solon 1309.4092

Triplet at Hadron Collider

Mass splitting between charged and neutral components around 165 MeV Charged state decays into DM + soft pions

Channel considered: mono-jet, mono-photon, Vector Boson Fusion, disappearing tracks

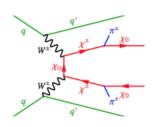

Focus on LHC 14 TeV with L=3000 fb⁻¹ and future 100 TeV pp collider with L=3000 fb⁻¹

For a recent analysis of Wino LSP at 14-100 TeV with mono-jet and disappearing tracks see also Low, Wang 1404.0682

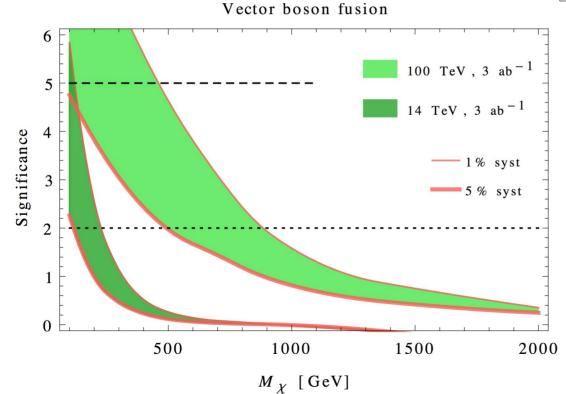
Monojet

Background: mainly Z(nu nu)+jets and W(l nu)+jets Cuts on jets, MET, leptons similar to ATLAS-CMS mono-jet analysis rescaled to optimize sensitivity

Madgraph5 + Pythia + Delphes

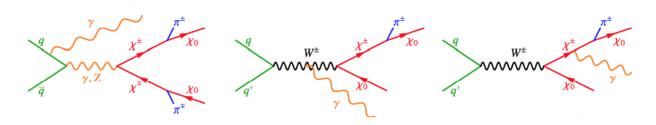


Sum in quadrature statistic and systematic errors

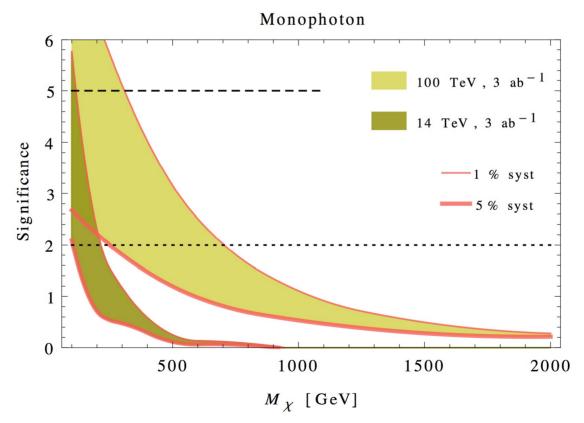

$$\text{Significance} = \frac{S}{\sqrt{B + \alpha^2 B^2 + \beta^2 S^2}}$$

Dijet channel

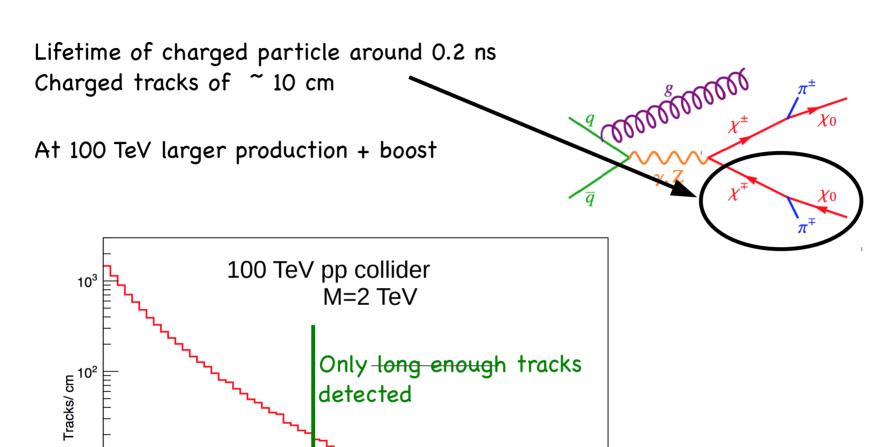
VBF processes characterized by 2 forward jets Apply cuts on rapidity, invariant mass and pT to reduce QCD background



Cuts	14 TeV	$100~{ m TeV}~3~{ m ab}^{-1}$	$100~{ m TeV}~30~{ m ab}^{-1}$
${E_T}[\text{TeV}]$	0.4 - 0.7	1.5 - 5.5	1.5 - 5.5
$p_T(j_{12}) [{ m GeV}]$	40 (1%), 60 (5%)	150	200
M_{jj} [TeV]	1.5 (1%), 1.6 (5%)	6 (1%), 7 (5%)	7
$\Delta\eta_{12}$	3.6	3.6	3.6 (1%), 4 (5%)
$\Delta \phi$	1.5 - 3	1.5 - 3	1.5 - 3
$p_T(j_3)$ [GeV]	25	60	60
$p_T(\ell) \; [{ m GeV}]$	20	20	20
$p_T(au)$ [GeV]	30	40	40



Smaller sensitivities than mono-j


Mono-photon

Qualitatively the same: systematics are crucial. 100 TeV increase the reach of a factor 3-4

Disappearing tracks

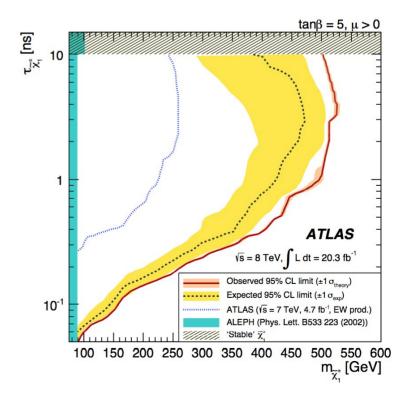
Track length [cm]

detected

Disappearing tracks

Lifetime of charged particle around 0.2 ns

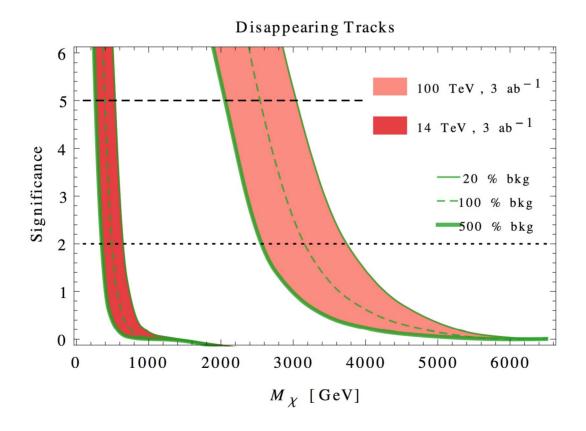
Charged tracks of ~ 10 cm


Backgrounds:

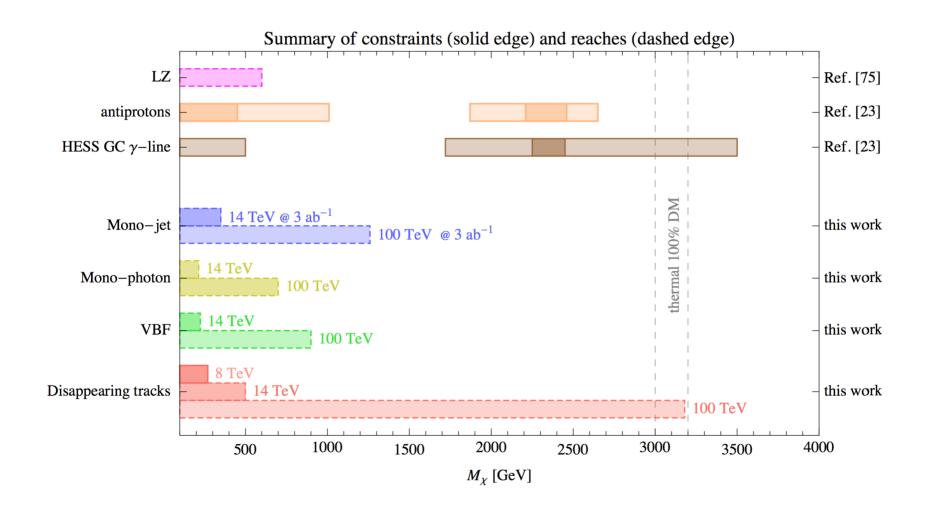
- interactions of charged hadrons in the detector

- unidentified leptons
- pT mis-measured tracks (dominant at large pT)

ATLAS 8 TEV with 20 fb⁻¹


Bound M>270 GeV (95% CL)

Disappearing tracks


Estimate the sensitivity extrapolating the 8-TeV background rescaling with the jets+MET events cross-sections

Band: bkg multiplied/divided by factor 5

Summary

Indirect searches good probe of EW triplet DM BUT still large astro-uncertainties LHC-14 cover part of non-thermal DM scenario / DM under-abundant 100 TeV collider could potentially test thermal WINO.

