

tory agreement with some of the major observations on cosmic rays.

ALICE

Stellar wind collisions: thermal emission

X-ray emitting gas unlikely to be from SN (too young, no radio, no polarisation, low velocity)

Director	V DAVE PROM	HIGH MARC COLU	FORMING REGIONS

Region	Distance (pc)	Earliest Star ^a	Number O6 or Earlier	Diffuse X-Rays?	Diffuse Area (pc²)	$N_{\rm H}$ (10 ²¹ cm ⁻²)	kT (keV)	L_X^b (10 ³³ ergs s ⁻¹)	Ref.
LMSFRsc	150-350	Late B	0	No				≤10-5	
Orion Nebula	450	O6	1	No				$<10^{-3}$	1
Eagle Nebula	2000	O5	2:					$<10^{-3}$	2
Lagoon, NGC 6530	1800	O4	3:	No				<10-2	3
Lagoon, Hourglass	1800	O7	0	Probably	0.04	11.1	0.63	$\leq 0.7^{d}$	3
Rosette Nebula	1400	O4	2	Yes	47	2	0.06, 0.8	≤0.6 ^d	4
RCW 38	1700	O5	1:	Yes	2	11.5°	2.2°	1.6°	5
Omega Nebulaf	1600	O4	7	Yes	42	4	0.13, 0.6	3.4	4
Arches cluster	8500	O3/W-R	>30	Yes	14	100	5.7	16	6
NGC 3603	7000	O3/W-R	>20	Yes	50	7	3.1	20	7
Carina Nebula	2300	O3/W-R	>30	Yes	1270	3-40	0.8:	200:	8

Numerous high mass stars ST < O7; $v_w > 2\text{-}3000 \text{ km/s}$ I-10 MK $L_X \sim 10\%$ of kinetic luminosity wind-wind or wind-cloud

 $L_X < 10^{35}$ erg/s 10% $F_X < 10^{-11}$ erg/s cm² Detectable within several kpc

Townsley et al, 2003, 2005, 2011

Cygnus region: non thermal emission

Gamma-rays from wind driven shocks

Eta Carinae

Spectral energy distribution

Close to periastron A&A (2011) 526, 57

Acceleration and cooling ("one zone")

Spectral fit parameters:

	Parameter	Value	
Environment	Photon energy density Magnetic field	2.7 0.5	erg/cm ³
	Density	3 · 109	cm ⁻³
Electron distribution	Powerlaw index	2.25	
	γ _{max,e} Total energy	$\begin{array}{c c} 10^4 \\ 10^{40} \end{array}$	erg
Proton distribution	Powerlaw index	2.25	
	γ _{max,p} Total energy	10^4 $1.3 \cdot 10^{40}$	erg

Shock acceleration is counterbalanced by

• e IC scattering
$$t_{IC} = \frac{3\gamma m_e c^2}{4\sigma_T c \gamma^2 \beta^2 U_{rad}} = \frac{3\pi R^2 m_e c^2}{\sigma_T \gamma \beta^2 L} \approx \frac{R_{10^{14} \text{cm}}^2}{\gamma_{10^4} L_{5 \cdot 10^6 L_{\odot}}} \times 6 \cdot 10^2 \text{ s.}$$

• p interaction
$$t_{pp} = \frac{1}{\sigma_{pp}\delta nc} = \frac{4\pi R_{sh}^2 m_p V_w}{\sigma_{pp}\delta \dot{M}c} \approx \frac{R_{10^{14}\text{cm}}^2 V_{10^3\text{km/s}}}{\delta_{10} \dot{M}_{10^{-4}\text{M}_{\odot}/\text{yr}}} \times 4 \cdot 10^5 \text{ s.}$$

Comparing the Fermi acceleration time scale $t_{acc} = \frac{R_L}{c} \left(\frac{c}{V}\right)^2$

to the cooling times provides:
$$\gamma_{max,e} =$$

to the cooling times provides:
$$\gamma_{max,e} = \sqrt{\frac{3\pi ec^2}{\sigma_T\beta^2}} \sqrt{\frac{B \cdot R^2}{L}} \frac{V}{c} \approx \sqrt{\frac{B_{1G} \cdot R_{10^{14}cm}^2}{L_{5 \cdot 10^6 L_{\odot}}}} V_{10^3 km/s} \times 3 \cdot 10^4 cm^2}$$

Observed orbital modulations

The X-ray emission varies by ~4 (excl."eclipse") The GeV emission varies by 1.3 The I0 GeV emission varies varies by $8^{+\infty}_{-4}$

3D-hydro-simulations (Flash)

Simulated modulations

Eichler & Usov 93: «the pionization conversion efficiency should be proportional to D⁻¹, unlike the inverse Compton luminosity»

Comparing models

1. gamma-ray pulsar & PWN (Abdo et al, 2010)

Variability excludes the PWN
Pulsar not detected by Chandra
Coincidence probability ~10⁻⁵

2. external shock (Ohm et al, 2010)

Does not explain more than 20'% of the 50 keV component. Cannot explain the >10 GeV component, nor its variability A contribution is possible

3. two electrons populations (Bednarek & Pabich, 2011)

Acceleration parameters vary along the shock surface resulting in a smooth electron spectrum Observed variations of the cutoff energy are much smaller than predicted

4. electrons & hadrons (Eichler & Usov, 1993; Farnier & Walter, 2011)

Still working (and somewhat expected)

IC maximum after periastron

Eta Carinae is likely a Large Hadron Collider

Summary and energetics

Observations:

- In the GeV, the orbital modulation is < 2
- Above I0 GeV, the flux is strongly modulated with the orbital phase (factor ~ I0)

Wind collision simulations:

- The total electron spectrum is smooth
- The mechanical luminosity available to accelerate electrons is not strongly modulated
- The π^0 decay emission depends on the density and could be modulated in a similar way

as the X-ray emission

• Energetics:

- Thermal X-rays: $25 L_{\odot}$ (2% L_{shock})

- Synchrotron: $< 0.1 L_{\odot}$

- electron acceleration: $50 L_{\odot}$ (6% L_{mec})

- π^0 emission: 10 L_o (2% L_{mec})

- η Carinae shows evidences for electronic and hadronic acceleration
- Proton cutoff energy $\geq 10^{13}$ eV, higher than measured in middle aged SNR
- Efficiency of particle acceleration ~ 5% (Spitkovsky's simulations: 10%)