Geneva, 21/1/2015 Sugar 2015

Results from the PAMELA space experiment

M. Casolino INFN & University of Rome Tor Vergata RIKEN

Past, present and future experiments

39 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 I AZIO-SIRAD 2006 ... NINA-2 NINA-1 **ALTEA** SILEYE-3 SILEYE-1 SILEYE-2 SILEYE-SILEYE-3/ LAZIO-SIRAD 4/ALTEA SILEYE-SILEYE-2 ALTEINO:

Pamela Collaboration

Integration in Baikonur cosmodrome, Spring 2006

photo M. Casolino

Coupling to Soyuz

Pamela during integration in Baikonur

Gagarinsky Start, 14/6/2006

Launch on June 15th 2006 Soyuz-U rocket

70 degrees polar orbit 350*600km i, now 600km

The PAMELA apparatus

Pamela Instrument

Time of Flight (three scintillators, 6 planes, 48 phototubes)

Magnetic (0.46T) Spectrometer Microstrip detector (6 double sided microstrip planes)

Silicon Tungsten Tracking Calorimeter (44 planes of 96 strip) Shower Catcher Scintillator Neutron Detector

Principle of detection

Electrons

Positrons

Protons

Particle identification

Selection criteria

Fitted, single track High lever arm, Nx Rigidity R>0 Beta>.2 No anticoincidence

•Montecarlo efficency for cuts

- •Trigger efficiency
- Tracking efficiency
- Multiple Scattering

Correction for energy loss in Let

•Back scattering...

•Systematics

about 1-2% uncertainty on abs flux.

5

10⁻¹

¹⁰rigidity (GV)

10

High precision cosmic ray measurements challenge and constrain models of production, acceleration and propagation of cosmic ray in the Galaxy and the heliosphere

On several different scales

- \rightarrow Modeling
- → Dose and risk estimation for astronauts on ISS and Moon/Mars

Pamela Physics objectives in the Hillas Plot

Cosmological scale, (beyond Cosmic Microwave Background)

Matter / Antimatter Asymmetry in the Universe

 Sakharov conditions
 Direct violation of baryonic number particle "X" decays breaking baryon symmetry

2) CP violation

to avoid specular antiparticle decay

3) Non thermal equilibrium at a given time

To avoid baryon compensation through inverse processes

Sakharov, A.D. 1967, J. of Exper. and Theo. Phys. Letters, 5, 24-28, "Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry of the Universe"

Matter – Antimatter domain separation?

- Antihelium and antinuclei search
- γ -ray ≈ 0.1 GeV from annihilation in Antihelium search boundary regions
- Current limit: separation above cluster of galaxy ($\geq 10 \text{ Mpc}$)

Steigman, G. 1976, Ann. Rev. Astron. Astrophys. 14, 339, "Observational tests of antimatter cosmologies"

- Observable?
- Magnetic fields ?
- Survival probability?

Ahlen, S.P. et al. 1982, ApJ, 260, 20, "Can we detect antimatter from other galaxies?" Casolino, INFN & University Roma Tor Vergata

M33

Search for antinuclei

Antihelium also from primordial nucleosyinthesis

Antinuclei only from antistars

Search for exotic matter: Strangelets (Lumps of Strange Quark Matter) Roughly equal numbers of u,d,s quarks in a single 'bag' of cold hadronic matter.

u,d,s quark matter might be stable Not limited in A A=100, 1000.... Z is almost zero due to cancellation of quark charge

Could account for a (small) part of DM

Also candidate of UHECR

Strangelet upper limit

Cosmic rays on Galactic scale: Nuclei, protons, antiprotons, isotopes

Cosmic rays are accelerated in Supernova explosions (probably)

- Meet energy criteria
- First order Fermi shock acceleration produces power law spectrum
- Observed in gamma by Agile and Fermi

- X-ray measurements of the same SNR \rightarrow evidence that protons and nuclei can be accelerated E>10^15 eV in young SNR Uchiyama, et al., Nature 449, 576 (2007).
- AGILE: diffuse gamma-ray (100 MeV 1 GeV) SNR IC 443 outer shock \rightarrow hadronic acceleration *M*. *Tavani, et al., ApJL 710, L151 (2010).*
- Fermi: Shell of SNR W44 have \rightarrow decay of pi0 produced in the interaction of hadrons accelerated in the shock region with the interstellar medium A. Abdo, et al., Science 327, 1103 (2010).
- Starburst galaxies (SG), where the SN rate in the galactic center is much higher than in our own, the density of cosmic rays in TeV gamma-rays (H.E.S.S infers cosmic rays density in SG NGC 253 three orders of magnitude higher than in our galaxy *F. Acero, et al.*, *Science 326*, 1080 (2009).
- VERITAS: SG M82 cosmic rays density is reported to be 500 times higher than in the Milky Way *VERITAS Collaboration, et al., Nature 462, 770 (2009*

Keplers' supernova

Tycho's supernova

Pamela galactic proton and He

- Different spectral index for proton and helium.
- Helium percentage is growing with rigidity
- Challenges Supernova only origin of cosmic ray and/or acceleration/propagation models.

Ratio P/He: Rigidity

- 1. Acceleration is a rigidity dependent effect
- 2. The ratio decreases →
 More He at high energies
 → Acceleration mechanisms or sources are different?
- 3. Measurement valid also below the (low) solar modulation

Acceleration / Propagation is a rigidity phenomenon

Excellent overlap with previous experiments

BESS

Brige with ATIC & CREAM toward high energy

$$\gamma_{30-1000GeV, p} = 2.782 + 0.003 \text{ (stat)} + 0.004 \text{ (syst)}$$

$$\gamma_{15-6\ 00GeV/n,\ he} = 2.71 + 0.01\ (stat) + 0.007\ (syst)$$

$$\gamma_T = \frac{dlog(\phi_T)}{logT} = (\gamma_R - 1)\frac{T^2 + Tmc^2}{T^2 + 2Tmc^2} + \frac{T}{T + mc^2}$$

Constant with years

At higher energies: Cream data

...at yet higher energies

Conclusion from Proton and Helium

- Proton and Helium undergo different processes even in GeV-TeV scale
- Change in spectral index around 230-240GV
- Needed to bridge to high energy
- Various hypotesis to explain Pamela data
- Additional Sources *Wolfendale 2011, 2012*
- Spallation, Propagation Blasi & Amato 2011, 2013
- Weak local component (+ others) Vladimirov, Johanesson, Moskalenko 2011
- Reacceleration Thoudam & Horandel, 2013
- Various models, Moskalenko 1108.1023

B/C ratio

Propagation in the Galaxy ApJ 791 2 2014

B/C ratio

Secondary/primay

 $\mathsf{CNO+ISM} \xrightarrow{\rightarrow} \mathsf{B}$

 $N_{B}\,/\,N_{C}\,\propto\lambda_{esc}\cdot\sigma_{CNO\rightarrow B}$

→ Propagation in the Galaxy
Time of permanence of cr

Propagation in the galaxy

H and He Isotopes *Propagation in the Galaxy*

- Flux depends on solar modulation
- Ratio is less dependent
- Strong tool for evaluating secondary particle production in the galaxy
- Complementary to B/C

ApJ 770:2, 2013

Antiprotons

- Secondary production, kinematics well understood
- Probe for extra sources
- Galactic scale

Indirect Dark matter search in space

Search (and constrain) Dark Matter

Antiproton/proton ratio

Low Energy > Confirms charge dependent solar modulation

High Energy → Consistent with models (Galprop, Donato...)

Antiproton absolute flux

Apparently no extra sources

Rule out and strongly constrain many models of DM

S M. Asano, et al, Phys. Lett. B 709 (2012) 128.
R. Kappl et al , PRD 85 (2012) 123522
M. Garnyet al, JCAP 1204 (2012) 033
D. G. Cerdeno, et al, Nucl. Phys. B 854

Galactic neighborhood: e+, e- (1-2 kpc)

Pamela positron fraction

Pamela positron fraction: comparison with other data

AMS & FERMI confirm PAMELA data

Anomalous source at high energy

Charge dependet Solar modulation at low energy → Need 3D model of heliosphere

Absolute positron spectrum

Propagation Charge dependent solar modulation

PRL111, 081102 (2013)

PRL111, 081102 (2013)

Electron spectrum

Solar modulation at minimum of solar cycle 23-24: 2006-2013

Charge dependent solar modulation of low energy positrons

•Charge dependent solar modulation

•Separate qA>0 with qA<0 solar cycles

•Evident in the proton flux

•Observed in the antiproton channel by BESS

•Full 3D solution of the Parker equation – drift term depends on sign of the charge

A < 0 Positive particles

Solar modulation of galactic protons and nuclei

Very long and peculiar solar minimum.

Current solar cycle (24) late and weak.

Closer to interstellar medium. Good reference field for dosimetry

From V. Formato

Solar modulation at minimum of solar cycle XXIII-XXIV

 $F_{is} = 1.54 \ \beta_{is}^{0.7} \ R_{is}^{-2.76}$ p/(cm² s sr GV)
Spectral index
2.76 ±0.01 $J(r, E, t) = \frac{E^2 - E_0^2}{(E^2 + \Phi(t))^2 - E_0^2} J(\infty, E + \Phi(t))$

Solar modulation parameter $\phi(GV)$

However spherical approximation is not sufficient. E.g. charge dependent solar modulation

GRADIENTS IN THE HELIOSPHERE L=5AU

$$ln\Big(\frac{I(t,R,\theta)}{I_{PAMELA}(t)}\Big) = G_R R + G_\theta \theta$$

Gradients in the heliosphere

Figure 2: Time variations from 2006 to 2008 of different particle intensity measurements with respect to energy. Marked by full circles are the Ulysses/KET proton channels used here for gradient calculations.

1-5 AU

Figure 6: Radial and latitudinal gradients for different selection criteria and fit methods, as in Tab. 2.

Solar particle events (1 AU)

2006/12/13 00:21

GOES11 Proton Flux (5 minute data) Begin: 2006 Dec 13 0 GOES11 Proton Flux (5 minute data) Begin: 2006 Dec 6 00 10* GOES11 Proton Flux (5 minute data) GOES11 Proton Flux 10* Begin: 2006 Dec 9 00 10* 10* 10³ 10^{3} 10^{3} 10^{3} 10² 10² ۳. ا 5 10^{2} 10^{2} s-sŝ cm⁻². cm⁻². ģ 10 101 Έ E 0 10 articles articles Particles Particles 10 10° 10 10 ñ 10-1 10 10 104 Dec 8 Dec Dec 6 Dec 7 10 Universal Time Dec 9 Dec 10 Dec 11 Dec Dec 12 Dec 13 Dec 14 Dec 15 Dec Universal Time NOAA/SEC Boulder, Updated 2006 Dec 8 23:56:04 UTC NOAA/SEC Boulder, Updated 2006 Dec 14 23:5 Updated 2006 Dec 15 23:56:06 UTC Universal Time Jpdated 2006 Dec 11 23:56:04 UTC NOAA/SEC Boulder,

ApJ 742, 2, 102, 11, 2011.

Forbush decrease

Time and rigidity dependence of Forbush decrease

From Mergè Martucci Sotgiu

GEOMAGNETOSPHERE, VAN ALLEN BELTS

Selection of galactic component according to geomagnetic cutoff

Geomagnetosphere, Van Allen Belts (1000 km)

Pamela

Measurements of the radiation belts

Google

RED: JULY 2006 BLUE: AUGUST 2007

P/(cm^2 sr GeV s)

Primary and secondary spectra: 6000 **Intermediate latitudes** 4000 2&& cutoff <= cutoff > 4 2000 z (km) -2000Penumbra P/(cm^A2 sr GeV s) -4000 10⁻¹ tion height -6000 *M. Honda*, $2008 \frac{8000}{x^2 + y^2}$ 10⁻² 10000 12000 1400 (km)10⁻³ 10-4 Secondary particles (reentrant albedo) 10⁻⁵ 10⁻¹ 10 GeV

RED: JULY 2006 BLUE: AUGUST 2007

Primary and secondary spectra: 6000 **Magnetic equator** 4000 cutoff > 10&& cutoff <= 14 2000 z (km) -2000P/(cm^2 sr GeV s) 10⁻¹ -4000 Observation height -6000 Ground Penumbra *M. Honda*, $2008 \times \frac{100}{x^2 + y^2}$ 10⁻² 10000 12000 1400 (km)10⁻³ 10-4 Secondary particles 10⁻⁵ 10⁻¹ 10 GeV

RED: JULY 2006 BLUE: AUGUST 2007

Trapped proton flux in the Van Allen belt (South Atlantic Anomaly) ApjL 799 4 2015

(PSB97 plot by SPENVIS project, model by BIRA-IASB)

	А	γ_0	γ_1	χ^2/ndf
nero	0.11±0.01	6.0±0.4	3.1±0.5	7.1
rosso	(2.3±0.3) 10 ⁻²	5.9±0.5	2.6±0.6	6.8
verde	(5±3) 10 ⁻⁴	8.1±1.8	4.7 ± 1.8	10.

Integral fluxes at different GC altitudes, averaged over the explored pitch angle range

arXiv:1412.1765 Submitted to Apj

Discovery of stably trapped antiprotons in Earth's radiation belt

O. Adriani *et al.* 2011 *ApJ* **737** L29

Pamela is operating successfully in space

•Expected three years of operations – survived 8.5! •Mission prolonged at least 1 more year

•Hope to continue measure deep in the 24th sølar cycle

http://pamela.roma2.infn.it http://www.casolino.it

