Gamma-ray emission from star-forming complexes observed by MAGIC: W51 and HESS J1857+026

Ignasi Reichardt, Julian Krause, Victor Stamatescu, Stefan Klepser, Emiliano Carmona on behalf of the MAGIC Collaboration Geneva, January 23rd 2015

Outline

- The MAGIC Telescopes
- W51C in W51 An extreme SNR
- Substructure in HESS J1857+026
- Wrap up and conclusions

The MAGIC telescopes

Current Performance

- Energy threshold: 50GeV
- Performance at >300GeV energies:
 - Sensitivity of 0.56% Crab in 50h
 - Angular resolution of 0.07°
 - Energy resolution of 16%

ORM (La Palma), 28°46'N 17°53'W 2200m asl

W51: a massive star-forming region

d = 5.5kpc $n_{max} \sim 1 \times 10^5 \text{ cm}^{-3}$ Includes SNR W51C (30kyr old)

Some controversy: Tian&Leahy 2013 ApJ 769 L17

Non-thermal emission around an HII region in W51B

W51C/B in X-rays

The W51 complex in gamma rays

W51 MAGIC Skymaps

Aleksić et al. 2012, A&A 541, A13 (2012)

21cm cont. (Koo 1997)

11.4 sigma detection 3% Crab (E > 1 TeV) Γ = 2.58 ± 0.07_{stat} ± 0.22_{syst}

W51 and HESSJ1857+026 with MAGIC

W51 SED model

W51 and HESSJ1857+026 with MAGIC

W51 SED model (ZOOM) Aleksić et al. 2012, A&A 541, A13 (2012)

luminosity ~10³⁶ erg/s, 16% efficiency

HESS J1857+026: not just a Galactic PWN

HESS J1857+026 in Fermi

Already seen in Neronov&Semikoz 2010 arXiv:1011.0210

HESS J1857+026 in MAGIC

Aleksić et al. 2014 A&A 571, A96

HESS J1857+026 SED

Aleksić et al. 2014 A&A 571, A96

A cavity towards J1857.6+0297

Relic PWN in wind-blown bubble? de Jager &Djannati-Ataï (2008) Bock & Gvaramadze (2002)

Collective effects from OB/WR winds? Absorbed! \rightarrow Reimer et al. (2006)

Outflows of massive protostars? Araudo et al. (2008) Bosch-Ramon et al. (2010)

W51 and HESSJ1857+026 with MAGIC

Conclusions

- W51C is a powerful proton accelerator, not a typical SNR.
- Part of the emission from HESS J1857+026 is convincingly not associated to the PWN
 - \rightarrow VHE gamma rays coinciding with a gas cavity
 - \rightarrow What is the contribution of these objects to other TeV sources? (and Un-IDs?)
- SFRs are challenging targets for gamma-ray telescopes, and so will remain for many years!

backup

W51 and HESSJ1857+026 with MAGIC I. Reichardt for the MAGIC Collaboration

Angular resolution of MAGIC

Aleksić et al. 2014 (arXiv:1409.5594)

Sensitivity of MAGIC

Aleksić et al. 2014 (arXiv:1409.5594)

W51 in the infrared

The W51 complex in radio continuum

Interaction between W51C and W51B

High velocity neutral hydrogen:

NOTE: Galactic rotation at *I*=49°: ~60km/s (tangential point)

Alternative explanation & controversy available: W. W. Tian and D. A. Leahy 2013 ApJ 769 L17

Interaction between W51C and W51B

Coincidence with shocked molecular hydrogen:

- $0.16M_{o}$ describing a 14pc long arc structure
- 20-50km/s velocities with respect to ambient medium

W51 and HESSJ1857+026 with MAGIC

W51 Skymap >150GeV Aleksić et al. 2012, A&A 541, A13 (2012)

W51 and HESSJ1857+026 with MAGIC

W51 Extension

Extension: 0.12 +- 0.02(stat) +- 0.02(sys) deg

W51 Spectrum

W51 and HESSJ1857+026 with MAGIC

Substructure in W51

Events within 0.1deg: 25(PWN)/40(Cloud)

Spectral differences in W51

Aleksić et al. 2012, A&A 541, A13 (2012)

E[GeV]	cloud	PWN	<i>cloud</i> /all [%]	<i>PWN</i> /all [%]
> 300	200 ± 30	132 ± 25	30 ± 5	19 ± 4
> 500	116 ± 17	79 ± 17	32 ± 6	22 ± 5
> 1000	48 ± 10	27 ± 10	43 ± 12	24 ± 10

Part	Index	Flux
cloud	2.53 +- 0.10	1.2% Crab
PWN	2.66 +- 0.24	0.7% Crab

W51 SED model (input parameters)

Aleksić et al. 2012, A&A 541, A13 (2012)

- One-zone model
- Input particle spectrum:

$$\frac{dN_{e,p}}{dE_{e,p}} = K_{e,p} \left(\frac{E_{e,p}}{E_0}\right)^{-s} \left[1 + \left(\frac{E_{e,p}}{E_{br}}\right)^{\Delta s}\right]^{-1} \exp\left[-\left(\frac{E_{e,p}}{E_{cut,e,p}}\right)\right]$$

• Input parameters:

Parameter	Value	Reference
age	$\approx 30\ 000\ yr$	Koo et al. (1995b)
$E_{ m SN}$	$\approx 3.6 \times 10^{51} \text{ erg}$	Koo et al. (1995b)
d	5.5 kpc	Sato et al. (2010)
		Moisés et al. (2011)
θ (radio)	$\approx 30'$	Moon & Koo (1994)
B_{\parallel}	$< 150 \mu { m G}$	Koo et al. (2010)
B (at masers)	1.5-1.9 mG	Brogan et al. (2000)
α_r	≈ -0.26	Moon & Koo (1994)
m _{cloud}	$1.9 \times 10^5 \ \mathrm{M_{\odot}}$	Carpenter & Sanders (1998)

W51 and HESSJ1857+026 with MAGIC