Experience on design, prototyping and testing of cavity BPM for the European-XFEL

- Motivation
- Introduction
- Principle of CBPMs
- Mechanical properties of E-XFEL CBPMs
- Laboratory measurements of series production
- Electronics principle
- Beam based measurements at FLASH1 and FLASH2
- Summary and Outlook

CBPM = Cavity Beam Position Monitors
Motivation

View inside of structure with photons

- Shorter wavelength with high intensity resolve smaller structures
- Goal: higher photon energies with high intensity
- Way: Free-Electron Laser (FEL) with undulators
Introduction

European XFEL status: building-up the most powerful laser with short wavelength

Time structure of bunches

- 100 ms
- 100 ms

600 µs

99.4 ms

222 ns

FEL process

X-ray photons

Strong overlap of electron and photon bunches required

Transverse size of 30µm expected, need to resolve the positions with lower noise compared to beam size

 Requirement: <1µm BPM noise for charge within 0.1 – 1 nC

http://www.desy.de/xfel-beam/

https://media.xfel.eu/
Introduction

Cavity BPM for European XFEL within a cooperation:

- DESY: BPM mechanics
- PSI: front end electronics and digitalization

Two kinds of CBPMs designed:

- For undulator intersection with 10mm beam pipe diameter
- For dedicated positions within beamline with high demands on beam position measurements with 40.5 mm pipe diameter, e.g. energy and intra-bunch feedback

Both kinds have similar properties to use same electronics
Principle of CBPMs

CBPM consists of 2 resonators: dipole for position and reference for normalization.

With antenna in resonator following signals can be obtained:

- Amplitude of TM_{11} mode proportional to offset r and charge Q; advantage compared to button or stripline BPMs where two large amplitudes used to calculate small offset.
- Waveguide/slot selects dipole mode.
- For charge normalization and sign: reference resonator with monopole mode.
- Frequencies depend on mechanical sizes; decay time and quality factor depend on material and antenna position.
Principle of CBPMs

Simulation to show

- propagation of dipole mode in waveguide
- monopole mode no propagation in waveguide

Ref: V. Balakin et al., PAC 1999
Mechanical properties of E-XFEL CBPMs

Design obtained from T. Shintake
His design for SPring-8 Angstrom Compact free electron Laser (SACLA)

Material: Stainless Steel
Pipe diam.: 20 mm
Slots connected to tube

Measured resolution: < 0.6 μm at 0.1 nC

Photo by: D. Nölle

Courtesy H. Maesaka
Mechanical properties of E-XFEL CBPMs

Undulator CBPMs:

- Stainless steel “discs” forms the cavities without any tuners: RF- properties depend on mechanical tolerances; these tolerances are calculated to match the requirements
- Discs brazed together
- High performance feedthrough welded to the body

- Resonance frequency (loaded) 3.30 ± 0.03 GHz
- Q, loaded 70 ± 10
- Max. frequency difference between dipole and reference resonator: ≤ 30 MHz
- Crosstalk between resonators: < -100 dB

Q_{\text{loaded}} results in decay time of 6.7 ns to be able to resolve bunches with 222 ns distances
Mechanical properties of E-XFEL CBPMs

Beamline CBPMs:

- Stainless steel “discs” form the cavities without tuners
- Brazed together
- Distance between reference and dipole resonator = 190 mm
- High performance feedthrough flange mounted

- Frequency (loaded) \(3.3 \pm 0.03\) GHz
- \(Q, \text{ loaded}\) \(70 \pm 10\)
- Frequency difference between dipole and reference resonator: \(\leq 30\) MHz
- Crosstalk between both resonators: \(< -100\) dB

\(Q_{\text{loaded}}\) results in decay time of 6.7 ns to be able to resolve bunches with 222 ns distances
Laboratory measurements of series production

- Statistics after production of 122 Undulator Cavity BPMs

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole resonator</td>
<td>3295.4 ± 1.6 MHz 69.3 ± 1.1</td>
</tr>
<tr>
<td>Reference resonator</td>
<td>3301.3 ± 5.4 MHz 75.5 ± 1.2</td>
</tr>
<tr>
<td>Resonance frequency</td>
<td>6.4 ± 4.7 MHz</td>
</tr>
<tr>
<td>difference</td>
<td></td>
</tr>
</tbody>
</table>

- Larger deviation of reference frequency due to brazing problem
- After correction of brazing foil this effect disappears
- Good communications between DESY and company to solve problems
- RF-properties of all BPMs within specifications
- Production according to planning; finished July 2013
Laboratory measurements of series production

- Statistics after production of 30 Beamline Cavity BPMs

<table>
<thead>
<tr>
<th></th>
<th>Resonance frequency and loaded quality factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole resonator</td>
<td>3295.1 ± 1.3 MHz 87.6 ± 1.9</td>
</tr>
<tr>
<td>Reference resonator</td>
<td>3298.9 ± 2.4 MHz 54.3 ± 2.4</td>
</tr>
<tr>
<td>Resonance frequency difference</td>
<td>3.9 ± 2.1 MHz</td>
</tr>
</tbody>
</table>

- Frequencies match better to specification compared to Undulator Cavity BPM
- Loaded quality factor shift observed: higher for dipole and lower for reference resonator; reason not understood; electronics can cope with the difference
- Good communications between DESY and company to solve problems
- Production within proposed time duration; finished similar to Undulator production in July 2013
Electronics principle

- Each of all 3 channels similar electronics
- One machine reference for all 3 channels
- Amplitude detection because of short bunch distance (low quality factor) compared to machines with low bunch repetition rates
- Corrections: IQ imbalance, attenuator values, beam angle, scaling to physical values, BPM rotation

- Single stage quadrature downconversion to (∼zero)-IF
- Sampling using 16-bit / 160MSPS ADC
- RF & sampling phase adjustable
Electronics principle

Compensating Signal Phase Drift

- Bunch-synchronous 216.66 MHz reference signal may drift away
- Sampling phase is digitally controlled to align the pulse top
- RF phase is digitally aligned to a 45 degrees angle of the reference cavity signal

![Diagram of sampling and phase alignment](image)

Sampler not aligned (phase≠0)

Sampler aligned (phase=0)
Beam based measurements at FLASH1 and FLASH2

Free-Electron Laser in Hamburg (FLASH) user facility with possibilities of testing new components

- Teststand at FLASH1 installed with 3 undulator and 1 beamline CBPM
- 17 undulator CBPM installed in FLASH2 2014
- Commissioning with electronics prototypes in both machines

Photos: D. Nölle
Beam based measurements at FLASH1

- Measurement of all BPM position along FLASH to FLASH1 beamline
- Using all BPM except one under test and predict the position for each bunch to this BPM
- Calculate difference between prediction and measurement results in BPM noise

- The electronics preliminary mode noise undergo requirement for E-XFEL
- Similar for bunch charge measurement
Beam based measurements at FLASH2

- Laboratory calibration provided; BPM output already visible at commissioning of FLASH2 including lab calibration
- All CBPMs and 2 Button BPMs are used at FLASH2 to calculate difference of BPM under test to the others
- Compared to FLASH1 larger noise value, reasons:
 - Frequent changes of attenuators due to larger offsets
 - ADC may saturate with large amplitudes indicated via valid flag but not yet integrated in control system
 - Mechanical vibrations
- Noise value depends on offsets due to amplitude, two attenuator setting visible
- More detailed analysis of individual contributions ongoing
- Beam based calibration ongoing
Summary and Outlook

Summary:

- Description of E-XFEL
- Principle of CBPMs
- Properties of CBPMs for E-XFEL
- Laboratory and beam based measurements

Outlook:

- Beam based calibration with one steerer and beamline lattice at FLASH2 and improvements on noise ongoing
- Building-up beamline of E-XFEL started in 2014, will end 2016
- Alignment of undulator intersection with about 300 µm precision
- Beam based fine alignment with CBPMs: measure beam offset with straight beam trajectory, in the tunnel readjust holder and measure again -> straight electron beam trajectory through center of quadrupoles