

Some physical aspects of tactile probes

Jürgen Schneider 1st PACMAN-Workshop, CERN

03.02.2015

AGENDA

- 01 Introduction
- **02** Basic principles of Touch-Trigger-Probes
- **03** Basic principles of Scanning-Probes
- **04** Aspects of calibration
- **05** Touching deformable surfaces
- Checking stability/quality/repeatability of probes (ISO-Tests)
- **07** Concluding remarks

Hexagon Group

GLOBAL COVERAGE, LOCAL PRESENCE

Hexagon has a strong local presence across a welldiversified geographical customer base in nearly all industries throughout the world. No individual customer represents more than 1.5 per cent of Hexagon's net sales.

2011 NET SALES

OPERATIONS IN OVER

NET SALES BY REGION 2011

Western Europe **35 %** North America **28 %** China **14 %** Asia Pacific **12 %** EMEA **7 %** South America **4 %**

NET SALES BY CUSTOMER GROUP 2011

Hexagon Divisions

Measurement of Environment and Infrastructure High precision measurement of industry components Software for company engineering; navigation and satellite systems

Hexagon Metrology GmbH: Leitz Factory

Industies served:

- Automotive
- Machine Tool
- **Energy Generation**
- Aircraft/Aerospace
- Heavy Industry

80 million € Turnover - 340 Employees **Commercial Operation and Leitz Factory**

Complete Product Portfolio

(0.3µm) Increasing Accuracy

Leitz PMM-G: Now up to 4.5m in Y – Second Generation

Introduction – Machine and probehead

METROLOGY

Introduction - Rigid-body vs. deformable-body

Sensors for a CMM

Different types of probeheads for tactile measurement

Touch-trigger probes

- Some advantages
 - lower cost,
 - smaller size
 - Fast probing
- Some disadvantages
 - Lower accuracy
 - Surface-normal cannot be determined (Variation due to bending cannot be taken into account)
 - Result depending on sampling-time and probing-speed

Scanning probes

- Some advantages
 - Higher accuracy
 - Surface-normal determined
- Some disadvantages
 - Higher cost
 - Bigger size
 - Probing takes more time

Touch-Trigger-Probe (McMurty, 1976)

Basic principles of scanning probes

Example for a compact probehead with leaf-spring

Optical measurement of the displacement

15

Max. forces according to momentum

- Angular momentum: e.g. 300N for the gripper
- D1 at platform: 2cm
- Max. length of stylus 1m
- Max. force: 1.2N
- Max. momentum: 1.2Nm
- Max. allowed momentum: 6Nm

- Use low forces to
 - avoid deforming
 - Avoid critical angular momentum

High- and low-force probing

Effects of inertial mass

0.61

5.00

0.12

0.61

1.22

3.05

6.10

30.50

73.20

244.00

Damping and clamping of a probehead

Typical probing of a surface

How to detect a probing

Physical aspects of calibration procedures

- Preconditons
 - machine has to reproduce in a certain way
 - errors are mapped so that the machine shows the same behaviour at every position
- Calibration takes care of different sensors and probetips or even surfaces

$$p(x_2) + d(x_2) + b_x \cdot d(x_2) - p(x_1) - d(x_1) - b_x \cdot d(x_1)$$

= 2 \cdot (R_{sphere} + R_{Probe})

$$\vec{p}_a = \vec{p} + \vec{d} + \begin{pmatrix} b_{xx} & b_{xy} & b_{xz} \\ b_{yx} & b_{yy} & b_{yz} \\ b_{zx} & b_{zy} & b_{zz} \end{pmatrix} \cdot \vec{d}$$

Practical example: a knife-edge

Checking stability of calibration

- Check certain qualifying parameters by recalibrating (e.g. bending-parameters) by comparing the values over time
- For a known calibrated probetip the calibrationparameters can be checked in certain intervals

Checking stability/quality/repeatability of probes

DE 10 2004 038416 B4

- Check the acceleration in the probehead
- If the acceleration is too high give a warning or redo measurements

Check signals with acceleration sensor

Keep deflection signal and filter acceleration-effects

DE 10 2010018250 A1

Checking hysteresis (electrical and mechanical)

Compensate dynamic errors

Checking stability/quality/repeatability of probes (ISO-Tests 10360-5)

MESSTECHNIK WETZLAR GMBH Metrology Systems

Annahmeprüfung und Bestätigungsprüfung für Koordinatenmessgeräte (KMG)

ISO 10360 - 5 : Antastabweichung P(FTU) / P(STU)

Kunde		VW Salzgitter		Prüfer	fwolimann		
Meßgerät		SXI		Prüfdatum	27-JAN-2015 / 17:22:28		
Seriennummer		103		Standort	Halle 1		
S/N Tastkopf		109		Bemerkung	Ifps x390 y400		
MPE P(FTU) / P(STU) [µm]		1.90 / 0.00		Temperaturen während der Messung			
Parameter der Kugel	Durchmesser		24.9869	Temp. X-Achse	20.00	Kompensation	
	X-Mittelpunkt		-48.1	Temp. Y-Achse	20.00	Ja	
	Y-Mittelpunkt		-2.7	Temp. Z-Achse	20.00	Aut	
	Z-Mittelpunkt		120.8	Temp. Werkstück	24.26		
Quindos Version		Quindos7 - V 7.9.13331-Release-3		Firmware Version	8@17y		
ISO Programm Version		ISO 10360 - V10.14226 -HexPts		Dateiname	PTest_030		

PT	ABW.	-TOL/2	GRAFIK	+TOL/2	PT NR.	ΑΒ₩. [µ]	GRAFIK -TOL/2 +TOL/2
1	0.73			*	14	0.07	.*
2	-0.17	i i	*	i ii	15	0.13	i i * i
j 3	0.60	i i		*	16	0.13	11 .* 1
4	0.09	1	.*	- I []	17	0.12	· *
5	0.08		.*	1 11	18	-0.15	*.
6	-0.44	*		1 11	19	-0.20	*.
7	-0.67			1 11	20	0.50	• •
8	0.24		. *	1 11	21	-0.49	* .
9	0.09		.*	1 11	22	-0.46	* .
10	-0.47	*		1 11	23	0.29	• *
11	0.31		. *	1 11	24	0.27	• *
12	0.04		.*	111	25	-0.41	* .
13	-0.21	!!	* .	! !!			

Zusammenfassung

Größte positive Abweichung : 0.73 µm bei Punktnummer 1 Größte negative Abweichung : -0.67 µm bei Punktnummer 7 Toleranz MPEp = 1.90 µm Spanne der Abweichungen = 1.40 µm

Testergebnis: bestanden !

Checking stability/quality/repeatability of probes (ISO 10360-4)

Concluding remarks

- The world of CMMs is quite rich and complicated and therefore still very interesting
- Studying patents can provide a broad knowledgebase of what's already achieved
- Reproducibility is most important for accuracy

