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CLIC - Compact Linear Collider 

Metrological challenges imposed by CLIC 
 Small beam size and impact section 

 submicron range 
 High-precision in focusing the beam 

 500 nm horizontal and 5 nm vertical normalized beam 
emittance 

Tight specifications on components’ alignment 
 14-17 μm error budget over 200 m 

A two beams, 50 km, e+/e- collider 

QUAD 

BPM 

ACCEL. 
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Magnetic measurements 

4000 quadrupoles in the main 
linac 

Magnetic measurements for PACMAN 

Main beam quad Final focus quad 

Magnetic Measurements 
Section 

Stretched wires Rotating coils 
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Measurement problem 

Upgrade of LHC 
(Linear Accelerator 4) 

Future accelerators 
(Compact Linear Collider) 

Existing large accelerators 
(Large Hadron Collider) 

Ø 50 mm Ø 20 mm 
Ø 8 mm 

2008 2015 2020 
2.5 x 2.5 x 

• Limited access for Hall probe  
• The smaller the radius coils,  
       the higher the uncertainty 
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Wire-based transducers 

A single stretched wire  
Magnetic 
measurements 
 field strength and 

direction 
 field harmonics 
 magnetic axis 
 longitudinal field 

profile 
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Solution 1: Stretched-wire method 

• Metrological reference for integrated field strength, direction and magnetic axis of LHC 
magnets 

• Magnetic flux measurement  



J. Di Marco et al., “Field alignment of quadrupole magnets for the LHC 
interaction Regions”. IEEE Transactions on Applied Superconductivity, 2000.
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Solution 2: Vibrating-wire method 

Plucked string 

Feeding the wire by alternating current 
(Lorentz Force) 

Wire in magnetic field 

Measure wire motion  
amplitude X and Y components 

Relate motion to  
magnetic field properties 

A. Temnykh. “Vibrating wire field-measuring technique”.  Nuclear Instruments and Methods in Physics Research, 1997. 
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Mathematical model 

• Linearity 

• Plane motion 

• Uniform and constant tension 

• Small deflections 

• Constant length 

• Uniform mass distribution 
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Measurement system design 

Working frequencies for max sensitivity 

Resonances Driving current frequency tuning 
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Vibrating-wire axis measurement 

A zero-finding problem 

QUAD A B 

A 
B 

1) Center finding (horizontal and vertical) 
 First resonance 
 Co-directional scanning 

 
2) Tilt finding (pitch and yaw) 

 Second resonance 
 Counter-directional scanning 

o P. Arpaia, C. Petrone, S. Russenschuck, L. Walckiers, “Vibrating-wire measurement method for centering and alignment of solenoids”, IOP 
Journal of Instrumentation, Vol. 8, Nov., 2013. 

o Z. Wolf. “A Vibrating Wire System For Quadrupole Fiducialization ”, Tech. rep. LCLS-TN-05-1. SLAC National Accelerator Laboratory, Menlo Park, 
California, USA, 2005. 
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Experimental setup 

P. Arpaia, M. Buzio, J. G. Perez, C. Petrone, S. Russenschuck, L. Walckiers. 
“Measuring field multipoles in accelerator magnets with small-apertures by an oscillating wire moved on a circular trajectory”, IOP JINST - 
Journal of Instrumentation, 2012. 

	

• Sensors: 
phototransistor 
SharpTM 
GP1S094HCZ0F 
 

• Current generator: 
Keithley® 6351  
 

• Common marble 
support for magnets 
and stages 

System architecture 

• Configuration 

Wire alloy - Cu-Be 

Wire mass density ρ 1.1·10-4 Kg·m-1 

Wire length L 1870 mm 

Reference 
magnet 

LHC-LI-QS 
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Comparison stretched-vibrating: 
Preliminary results 

• Precision 
– Compatibility 

– 30 times better for the vibrating wire (3-4 μm) 

• Sensitivity 
– Vibrating wire is suitable at low integral gradient             

(< 0.2 T)  

• Background fields 
– Stretched wire not sensitive 

– Compensation needed for vibrating wire  

Method 1: classical stretched wire center 

x0 [mm] x  [mm] y0 [mm] y  [mm] 

-0.270 0.136 0.123 0.098 

x0 [mm] x  [mm] y0 [mm] y  [mm] 

-0.272 0.003 0.086 0.004 

Method 2: vibrating wire center 
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Background field compensation (1/2) 

• Solution 1: displace the quadrupole at L/4 
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Z. Wolf. “A Vibrating Wire System For Quadrupole Fiducialization ”, Tech. rep. LCLS-TN-05-1. SLAC National Accelerator Laboratory, Menlo Park, 
California, USA, 2005 

• Solution 2: measure at different gradients 
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Magnetic center as a function of the magnet gradient 

Hyperbolic model 

Actual center 

Background 
field effect 

 Fit to the hyperbolic model  

Background field compensation (2/2) 



 
Domenico Caiazza 
1st PACMAN Workshop, CERN, February 2015 

Reference frame 

Fiducial marker localization 
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DBQ axis measurement 

 Magnetic axis measurement + fiducial 
markers localization 
• In collaboration with EN-MEF-SU (Large 

Scale Metrology Section) 

 
 Both center and tilt were measured by the 

vibrating wire 
 

 Axis determination with +3 μm horizontal 
and +4 μm vertical precision 
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Magnetic center as a function of the 
magnet current 

CLIC DBQ (12 T integrated gradient) on the 
fiducialization bench with vibrating wire system 

M. Duquenne et al., “Determination of the magnetic axis of a 
CLIC drive beam quadrupole with respect to external alignment 
targets using a combination of wps, cmm and laser tracker 
measurements”. Proceedings of IPAC2014, Dresden, 2014.
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Background fields & Plane motion 

• No magnet on the measurement 
station 

• Background fields  
– 2% alteration of first harmonic 

• Fringe field from equipment (tensioning 
system) 
– High-order modes amplified 

• Elliptically polarized trajectory 
–  in resonance condition 

Predicted in: 
J. A. Elliott. “Intrinsic nonlinear effects in vibrating strings”, 
American Journal of Physics, 1989 
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• Around resonance 

– Non-constant oscillation amplitude!!! 

– Effect depending on the excitation 
frequency: minimal in resonance 
condition (5%) 

 

Steady-state modulation 

• Possible reasons 

– Non constant length 
and/or tension 

– Non ideal clamping 
(friction on the supports) 

– Excluded: coupling with 
ground vibrations 

Side band components 
in the frequency 
spectrum 
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Conclusions 

• Two methods for magnetic axis measurement 

 

• Preliminary test on a reference quadrupole 
– Comparison of precision and sensitivity 

– Influence of background field 

 

• Outlook 
– Uncertainty analysis of the vibrating-wire system 

– Design and commissioning of the PACMAN system  

– Measurement on the CLIC MBQ magnet 

– Comparison with PCB rotating coil 
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Thank you for your attention 

Measuring the magnetic axis of quadrupoles by a stretched wire 

PACMAN Workshop 2015 
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Method 1: preliminary results 

Horizontal offset with respect to the magnetic center 

Measured gradient as a function of magnet current 

+300 μm uncertainty for low-gradient (< 0.2 T/m·m)  

Average horizontal and vertical center offset  

m 

x0 [mm] St. Dev. [mm] y0 [mm] St. Dev. [mm] 

-0.270 0.136 0.123 0.098 
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Average horizontal and vertical center offset  

Linear regression of wire oscillation amplitude 

Method 2: preliminary results 

x0 [mm] St. Dev. [mm] y0 [mm] St. Dev. [μm] 

-0.272 0.003 0.086 0.004 
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Results 

• Reconstruction error 3% of the field 
peak 

• Repeatability 2% 
– RMS difference 

• Bandwidth limitation 

• Uncertainty sources 
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Overtones 

overtones 

main tone 

• Overtone amplitude from 2% to 7% of the main 
tone 
– Depending on system configuration 

• Overtones not contained in the current excitation 
signal 

Nonlinearity! 
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Optical sensor characterization 

• Keyence ® CCD sensors 

– Wide linear domain (6 mm)  

– Worse SNR 

• Sharp® phototransistors (currently 
employed) 

– Linear domain 40 μm 

– Low price 

– High sensitivity 

 

• Total Harmonic Distortion 
– No harmonic distortion by Sharp® 

Overtones are not artifacts 
from nonlinear sensor 

response 


