1st PACMAN Workshop

Measuring the magnetic axis of quadrupoles by a stretched wire

Domenico Caiazza 4.2.2015

- My role in PACMAN
- Magnetic measurements and measurement problem
- Classical stretched-wire method
- Vibrating-wire method
- Preliminary results and comparison
- Criticalities about the vibrating wire system
- Conclusions

European Commission

WP1 Metrology & Alignment *H. Mainaud Durand*

WP2 Magnetic Measurements S. Russenschuck WP3 Precision mech. & stabilization *M. Modena*

WP4 Beam Instrumentation *M. Wendt*

Ø

Solomon

oruun

Peter

Natalia

Vasileios

"Stretched-wire systems for the magnetic measurement of small-aperture magnets"

CLIC - Compact Linear Collider

A two beams, 50 km, e+/e- collider

Metrological challenges imposed by CLIC

- Small beam size and impact section
 - submicron range
- High-precision in focusing the beam
 - 500 nm horizontal and 5 nm vertical normalized beam emittance
- Tight specifications on components' alignment
 - > 14-17 μ m error budget over 200 m

Magnetic measurements

4000 quadrupoles in the main

linac

Main beam quad

Final focus quad

Magnetic measurements for PACMAN

Magnetic Measurements Section

Stretched wires

Iniversità legi Studi

Rotating coils

Domenico Caiazza

1st PACMAN Workshop, CERN, February 2015

Measurement problem

- Limited access for Hall probe
- The smaller the radius coils, the higher the uncertainty

Wire-based transducers

A single stretched wire

Magnetic measurements

- ✓ field strength and direction
- ✓ field harmonics
- ✓ magnetic axis
- ✓ longitudinal field profile

Solution 1: Stretched-wire method

- <u>Metrological reference</u> for integrated field strength, direction and magnetic axis of LHC magnets
- Magnetic flux measurement

$$\int_{\partial \mathscr{A}} \mathbf{E} \cdot \mathrm{d} \mathbf{r} = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathscr{A}} \mathbf{B} \cdot \mathrm{d} \mathbf{a}$$

J. Di Marco et al., "Field alignment of quadrupole magnets for the LHC interaction Regions". *IEEE Transactions on Applied Superconductivity*, 2000.

$x_0 = -\frac{R}{2} \frac{\Phi_x(+R) - \Phi_x(-R)}{\Phi_x(+R) + \Phi_x(-R)}$?) ?)
$y_0 = -\frac{R}{2} \frac{\Phi_y(+R) - \Phi_y(-R)}{\Phi_y(+R) + \Phi_y(-R)}$	$\frac{(1)}{(1)}$

Domenico Caiazza

1st PACMAN Workshop, CERN, February 2015

Ork Solution 2: Vibrating-wire method

A. Temnykh. "Vibrating wire field-measuring technique". Nuclear Instruments and Methods in Physics Research, 1997.

st

Mathematical model

- Linearity
- Plane motion
- Uniform and constant tension
- Small deflections
- Constant length
- Uniform mass distribution

$$\begin{split} u(z,t) &= \frac{2I_0}{L} \sum_m \frac{\int_0^L B_n(z) \sin\left(\frac{m\pi}{L}z\right) dz}{\sqrt{\left[T\left(\frac{m\pi}{L}\right)^2 - \rho\omega^2\right]^2 + (\alpha\omega)^2}} \sin\left(\frac{m\pi}{L}z\right) \sin(\omega t - \varphi_m) \,, \\ \varphi_m &= \arctan\left(\frac{\alpha\omega}{-\rho\omega^2 + T\left(\frac{m\pi}{L}\right)^2}\right) \,. \end{split}$$

Domenico Caiazza 1st PACMAN Workshop

Measurement system design

1 st

PACMAN

Vibrating-wire axis measurement

- 1) Center finding (horizontal and vertical)
 - First resonance
 - Co-directional scanning
- 2) Tilt finding (pitch and yaw)
 - Second resonance
 - Counter-directional scanning

A zero-finding problem

$$\mathbf{X} : \left(d_x(\mathbf{X}), d_y(\mathbf{X}) \right) = 0$$
$$\mathbf{X} := \left(x_A, y_A, x_B, x_B \right)$$

- **P. Arpaia, C. Petrone, S. Russenschuck, L. Walckiers,** "Vibrating-wire measurement method for centering and alignment of solenoids", *IOP Journal of Instrumentation,* Vol. 8, Nov., **2013.**
- **Z. Wolf**. "A Vibrating Wire System For Quadrupole Fiducialization", Tech. rep. LCLS-TN-05-1. SLAC National Accelerator Laboratory, Menlo Park, California, USA, **2005**.

Experimental setup

- Sensors: phototransistor Sharp[™] GP1S094HCZ0F
- **Current generator**: Keithley® 6351
- *Common marble* support for magnets and stages

P. Arpaia, M. Buzio, J. G. Perez, C. Petrone, S. Russenschuck, L. Walckiers.

"Measuring field multipoles in accelerator magnets with small-apertures by an oscillating wire moved on a circular trajectory", IOP JINST - Journal of Instrumentation, **2012.**

Configuration

st

PACMAN

Wire alloy	_	Cu-Be	
Wire mass density	ρ	1.1·10 ⁻⁴ Kg·m ⁻¹	
Wire length	L	1870 mm	

Reference magnet

Comparison stretched-vibrating: Preliminary results

Method 1: classical stretched wire center	•
---	---

x ₀ [mm]	σ _x [mm]	y ₀ [mm]	σ _y [mm]
-0.270	0.136	0.123	0.098

Method	2: vibrating wire center	

x ₀ [mm]	σ _x [mm]	y₀ [mm]	σ _y [mm]
-0.272	0.003	0.086	0.004

Precision

- Compatibility
- 30 times better for the vibrating wire (3-4 μ m)

Sensitivity

- Vibrating wire is suitable at low integral gradient (< 0.2 T)
- Background fields
 - Stretched wire not sensitive
 - Compensation needed for vibrating wire

Background field compensation (1/2)

• Solution 1: displace the quadrupole at *L*/4

$$\frac{2}{L}\int_0^L B_E \sin\left(\frac{2\pi}{L}z\right) dz = 0$$

PACMAN

Z. Wolf. "A Vibrating Wire System For Quadrupole Fiducialization", Tech. rep. LCLS-TN-05-1. SLAC National Accelerator Laboratory, Menlo Park, California, USA, **2005**

- Solution 2: measure at different gradients
 - δ_o : oscillation from quad field
 - δ_E : oscillation from external dipole

$$\delta(x) = \delta_Q(x) + \delta_E$$
$$= k(I_0) \cdot G(x - x_0) + \delta_E$$

$$x'_{0}: \delta(x'_{0}) = 0$$

$$x'_{0} = x_{0} - \frac{\delta_{E}}{k \cdot G}$$

Works if there is not a constant dipole in the magnet (not depending on I_m)

Background field compensation (2/2)

Magnetic center as a function of the magnet gradient

Reference frame

DBQ axis measurement

CLIC DBQ (12 T integrated gradient) on the fiducialization bench with vibrating wire system

Magnetic center as a function of the magnet current

M. Duquenne et al., "Determination of the magnetic axis of a CLIC drive beam quadrupole with respect to external alignment targets using a combination of wps, cmm and laser tracker measurements". Proceedings of I**PAC2014**, Dresden, 2014.

- Magnetic axis measurement + fiducial markers localization
 - In collaboration with EN-MEF-SU (Large Scale Metrology Section)
- Both center and tilt were measured by the vibrating wire
- Axis determination with <u>+3 μm</u> horizontal and <u>+4 μm</u> vertical precision

Domenico Caiazza

1st PACMAN Workshop, CERN, February 2015

Background fields & Plane motion

st

PACMAN

Steady-state modulation

- Around resonance
 - Non-constant oscillation amplitude!!!
 - Effect depending on the excitation frequency: minimal in resonance condition (5%)

- Possible reasons
 - Non constant length and/or tension
 - Non ideal clamping (friction on the supports)
 - Excluded: coupling with ground vibrations

- Two methods for magnetic axis measurement
- Preliminary test on a reference quadrupole
 - Comparison of precision and sensitivity
 - Influence of background field
- Outlook
 - Uncertainty analysis of the vibrating-wire system
 - Design and commissioning of the PACMAN system
 - Measurement on the CLIC MBQ magnet
 - Comparison with PCB rotating coil

PACMAN Workshop 2015

Thank you for your attention

Measuring the magnetic axis of quadrupoles by a stretched wire

SPARES

Method 1: preliminary results

Università degli Studi del Sannic

1 st

PACMAN

Average horizontal and vertical center offset

x _o [mm]	St. Dev. [mm]	y ₀ [mm]	St. Dev. [mm]
-0.270	0.136	0.123	0.098

Horizontal offset with respect to the magnetic center

<u>+</u>300 μ m uncertainty for low-gradient (< 0.2 T/m·m)

Measured gradient as a function of magnet current

Method 2: preliminary results

Results

- Reconstruction error 3% of the field peak
- Repeatability 2%
 - RMS difference

- Bandwidth limitation
- Uncertainty sources

Overtones

- Overtone amplitude from 2% to 7% of the main tone
 - Depending on system configuration

Nonlinearity!

• Overtones not contained in the current excitation signal

Optical sensor characterization

- Sharp[®] phototransistors (currently employed)
 - Linear domain 40 μm
 - Low price
 - High sensitivity

- Keyence [®] CCD sensors
 - Wide linear domain (6 mm)
 - Worse SNR

1st PACMAN Workshop, CERN, February 2015