

Non-Evaporable Getter Thin Film Coatings for Vacuum Application

Technical Student: Chiara Barcellini Supervisor: Paolo Chiggiato

• NEG Materials Introduction

- Ageing Campaign
- Coating Campaign
- Conclusions

Non-Evaporable Getter Materials

Non-Evaporable Getter Materials

Non-Evaporable Getter Materials

CAPTURE PUMPS

they remove molecules from the gas phase by fixing them on their surface

 $\tau = \tau_0 \exp\left\{\frac{E}{k_B T}\right\}$

Non-Evaporable Getter Materials

CAPTURE PUMPS

they remove molecules from the gas phase by fixing them on their surface

NEGs chemically react with the gases present in vacuum system

Non-Evaporable Getter Materials

CAPTURE PUMPS

they remove molecules from the gas phase by fixing them on their surface

NEGs chemically react with the gases present in vacuum system

Non-Evaporable Getter Materials

CAPTURE PUMPS

- free of contaminants
- free of the oxide layer

they remove molecules from the gas phase by fixing them on their surface

NEGs chemically react with the gases present in vacuum system

heating in situ the NEG thin film coating in order to allow the diffusion of the oxygen into the bulk material in vacuum system

Room Temperature

Room Temperature

heating in situ the NEG thin film coating in order to allow the diffusion of the oxygen into the bulk material in vacuum system

Room Temperature

heating in situ the NEG thin film coating in order to allow the diffusion of the oxygen into the bulk material in vacuum system

Activation Temperature

Room Temperature

heating in situ the NEG thin film coating in order to allow the diffusion of the oxygen into the bulk material in vacuum system

heating in situ the NEG thin film coating in order to allow the diffusion of the oxygen into the bulk material in vacuum system

Temperature at which the NEG pumping properties reach their maximum value.

Fundamental characteristics of NEG Material

- Solubility limit for oxygen
- Diffusivity for oxygen
- Reactivity
 - large enthalpy of adsorption for the gases in vacuum chambers
 - hydride phase with low dissociation pressure

	1																	18
1	H	2											13	14	15	16	17	He
2	Li	Be											B	C	N	0	F	Ne
3	Na Na	Mg Mg	3	4	5	6	7	8	9	10	11	12	13 seas Al	Si Si	P P Pasphares	16 2000 S 2000	17 Stats Cl Cilesia	18 20 Mar. Ar
4	g ann K réanna	Ca	Sc Sc	Ti Ti	V Tanders	Cr	Mn	Fe Fe	Co cobat	Ni Ni	Cu	30 mm Zn	Ga	Ge	As Assis	Se Se	Br Br	Kr
5	Rb	Sr Sr	Y	40 HER	Nb	42 Mo	AS IN Te televice	Ru	Rh	Pd	Ag	Cd	In	So	Share	Te Te	I I teginer	Xe
6	Cs Cs	Ba	57-71 La-Lu Latherites	Hf	78 1005 Ta	W	Re Re	Os Os	lr see	78 octor Pt Parlocar	Au	Hg	TI	Pb test	Bi	Po Po releases	At At	Rn
7	Fr Fr	Ra	89-103 Λς-Lr ameter	104 (1991) Rf	Db Db	106 Sg	Bh	108 III Hs	Mt	110 Ds	Rg	Uub	Uut	114 Uuq	115 Uup	Uuh	Uus	Uuo Uuo
				57 .0444	58 44.4	59 1401-	60 141.24	61 ⁽⁷⁴⁶⁾	62 HER	63 (H 34	64 11720	65 18110	66 10.10	67 14410	68 47.24	69 14110	70 172.00	71 mer
		Lanth	anides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	The	Dy	House	Er	Tm	Yb	Lu
		Ac	tinides	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Linguis

	1																	18
1	H	2											13	14	15	16	17	He
2	Li	Be											B	C	N	0	F	Ne
3	Na Na	Mg Mg	3	4	5	6	7	8	9	10	11	12	13 seas Al	Si Si	P P Pasphares	16 2000 S 2000	17 Stats Cl Cilesia	18 20 Mar. Ar
4	g ann K réanna	Ca	Sc Sc	Ti Ti	V Tanders	Cr	Mn	Fe Fe	Co cobat	Ni Ni	Cu	30 mm Zn	Ga	Ge	As Assis	Se Se	Br Br	Kr
5	Rb	Sr Sr	Y	40 HER	Nb	42 Mo	AS IN Te televice	Ru	Rh	Pd	Ag	Cd	In	So	Share	Te Te	I I teginer	Xe
6	Cs Cs	Ba	57-71 La-Lu Latherites	Hf	78 1005 Ta Tente	W	Re Re	Os Os	lr trees	78 octor Pt Parlocar	Au	Hg	TI	Pb test	Bi	Po Po releases	At At	Rn
7	Fr Fr	Ra	89-103 Λς-Lr ameter	104 (1991) Rf	Db Db	106 Sg	Bh	108 III Hs	Mt	110 Ds	Rg	Uub	Uut	114 Uuq	115 Uup	Uuh	Uus	Uuo Uuo
				57 -0444	58 44.4	59 1401-	60 141.24	61 ⁽⁷⁴⁶⁾	62 HER	63 (H 34	64 11720	65 18110	66 10.10	67 14410	68 47.24	69 14110	70 172.00	71 mer
		Lanth	anides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	The	Dy	Ho	Er	Tm	Yb	Lu
		Ac	tinides	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Linguis

Ti₃₀Zr₃₀V₄₀ is fully activated after 24 h of heating at 180 °C

What is going to happen to the NEG coated beam-pipes exposed to LHC atmosphere?

What is going to happen to the NEG coated beam-pipes exposed to LHC atmosphere? Ageing Campaign

What is going to happen to the NEG coated beam-pipes exposed to LHC atmosphere? Ageing Campaign

• What is going to happen to the IV group thin film if V is added?

What is going to happen to the NEG coated beam-pipes exposed to LHC atmosphere? Ageing Campaign

• What is going to happen to the IV group thin film if V is added?

Coating Campaign

Ageing Campaign

Exposure Points

Ageing Campaign

SAMPLE	Exposure Point	Exposure Duration
Reference	none	0 month
LSS3_1	Point 3	1 month
LSS3_2	Point 3	3 months
LSS1_1	Point 1	9 months
LSS1_2	Point 1	
N2 sealed	none	none

Ageing Campaign

Bake-out/Activation Procedure

	STEP 1	STEP 2	STEP 3
Ramp Rate [°C/h]	75	75	80
Temperature [°C]	120	230	20
Duration [h]	24	24	24
Ageing Campaign

Bake-out/Activation Procedure

Ageing Campaign

Bake-out/Activation Procedure

Fischer-Mommsen Dome

$$S_{eff}^{NEG} = C \left(\frac{\Delta P_1}{\Delta P_2} - 1 \right) - S_{eff}^{TMP}$$

Ageing Campaign

System Parameters

	H	CO
S	8	4,37
S	3456	924

Fischer-Mommsen Dome

Ageing Campaign

SAMPLE	H2 Pu	mping Spee	ed [l/s]	Sticking Probability			
	I Act	II Act	Vented	I Act	II Act	Vented	
Reference	381	-	-	4 10	-	-	
LSS3_1	-	761	386	-	1,5 10	4 10	
LSS3_2	395	-	-	4 10	-	-	
LSS1_1	615	-	669	1 10	-	1 10	
LSS1_2	NOT TESTED						
N2 sealed	NOT LEAK TIGHT						

Ageing Campaign

SAMPLE	H2 Pu	mping Spee	ed [l/s]	Sticking Probability			
	I Act	II Act	Vented	I Act	II Act	Vented	
Reference	381	-	-	4 10	-	-	
LSS3_1	-	761	386	-	1,5 10	4 10	
LSS3_2	395	-	-	4 10	-	-	
LSS1_1	615	-	669	1 10	-	1 10	
LSS1_2	NOT TESTED						
N2 sealed	NOT LEAK TIGHT						

SAMPLE	H2 Pu	mping Spe	ed [l/s]	Sticking Probability			
	I Act	II Act	Vented	I Act	II Act	Vented	
Reference	381	-	-	4 10	-	-	
LSS3_1	-	761	386	-	1,5 10	4 10	
LSS3_2	395	-		4 10	-	-	
LSS1_1	615	-	669	1 10	-	1 10	
LSS1_2	NOT TESTED						
N2 sealed	NOT LEAK TIGHT						

SAMPLE I Activ		ration II Ac t		ivation	Vented	
	V1 [Torr]	V2 [Torr]	V1 [Torr]	V2 [Torr]	V1 [Torr]	V2 [Torr]
Reference	7,7 10-11	1,52 10-11	-	-	-	-
LSS3_1	-	-	5 10-11	1,3 10-10	2,65 10-10	9,3 10 -11
LSS3_2	5 10-11	1,1 10-10	-	-	-	-
LSS1_1	1,80 10-9	3,5 10-9	-	-	1,61 10-9	3,6 10-9
LSS1_2	NOT TESTED					
N2 sealed	NOT LEAK TIGHT					

SAMPLE	AMPLE I Activatio		ion II Activation			ted
	V1 [Torr]	V2 [Torr]	V1 [Torr]	V2 [Torr]	V1 [Torr]	V2 [Torr]
Reference	7,7 10-11	1,52 10-11	-	-	-	-
LSS3_1	-	-	5 10-11	1,3 10-10	2,65 10-10	9,3 10 -11
LSS3_2	5 10-11	1,1 10-10	-	-	-	-
LSS1_1	1,80 10-9	3,5 10-9	_	-	1,61 10-9	3,6 10-9
LSS1_2	NOT TESTED					
N2 sealed		NOT LEAK TIGHT				

Ageing Campaign

SAMPLE	AMPLE I Activatio		ion II Activation			ted
	V1 [Torr]	V2 [Torr]	V1 [Torr]	V2 [Torr]	V1 [Torr]	V2 [Torr]
Reference	7,7 10-11	1,52 10-11	-	-	-	-
LSS3_1	-	-	5 10-11	1,3 10-10	2,65 10-10	9,3 10 -11
LSS3_2	5 10-11	1,1 10-10	-	-	-	-
LSS1_1	1,80 10-9	3,5 10-9	_	-	1,61 10-9	3,6 10-9
LSS1_2	NOT TESTED					
N2 sealed		NOT LEAK TIGHT				

	SAMPLE	I Acti	vation	II Acti	vation	Ven	ted
		V1 [Torr]	V2 [Torr]	V1 [Torr]	V2 [Torr]	V1 [Torr]	V2 [Torr]
R	Reference	7,7 10-11	1,52 10-11	_	-	-	-
L	LSS3_1	-	-	5 10-11	1,3 10-10	2,65 10-10	9,3 10 -11
L	LSS3_2	5 10-11	1,1 10-10	-	-	-	-
L	LSS1_1	1,80 10-9	3,5 10-9	_	- (1,61 10-9	3,6 10-9
L	LSS1_2	NOT TESTED					
N	N2 sealed		NOT LEAK TIGHT				

Ageing Campaign

SAMPLE						
	I Act	II Act	Vented			
Reference	8 10	_	-			
LSS3_1	-	7 10	5 10			
LSS3_2	1 10	-	-			
LSS1_1	1 10	-	-			
LSS1_2	NOT TESTED					
N2 sealed	NOT LEAK TIGHT					

Ageing Campaign

Coating Campaign

Compositions tested

Experimental Set-Up Coating Tower

Coating Campaign

Experimental Set-Up Coating Tower

Magnetron Sputtering

Coating Campaign

Coating Parameters Discharge Gas kr 4,5 10-3 Torr **Gas Pressure Solenoid Current** \sim 100 A **Solenoid Potential** $\sim 40 V$ **Cathode Current** - 600 V **Cathode Potential** 0,1 kW (DC) **Cathode Power** 0,2 A **Coating Tower Temperature** 100 °C

Experimental Set-Up Coating Tower

Coating Campaign

Coating Parameters

Macroscopic Measurement

• Sticking Probability for H2 and CO

Macroscopic Measurement

Coating Campaign

Macroscopic Measurement

• Sticking Probability for H2 and CO

Macroscopic Measurement

- Sticking Probability for H2 and CO
- Electron Stimulated Desorption ESD

Macroscopic Measurement

Coating Campaign

Macroscopic Measurement

- Sticking Probability for H2 and CO
- Electron Stimulated Desorption ESD

Macroscopic Measurement

- Sticking Probability for H2 and CO
- Electron Stimulated Desorption ESD
- Pumping Speed Measurement

Macroscopic Measurement

Coating Campaign

Macroscopic Measurement

- Sticking Probability for H2 and CO
- Electron Stimulated Desorption ESD
- Pumping Speed Measurement

Microscopic Measurement

Microscopic Measurement

• X-Rays Photoelectron Spectroscopy - XPS

Microscopic Measurement

- X-Rays Photoelectron Spectroscopy XPS
- Scanning Electron Microscopy SEM

SEM

Microscopic Measurement

• X-Rays Photoelectron Spectroscopy - XPS

Microscopic Measurement

- X-Rays Photoelectron Spectroscopy XPS
- Scanning Electron Microscopy SEM

Microscopic Measurement

- X-Rays Photoelectron Spectroscopy XPS
- Scanning Electron Microscopy SEM
- Energy Dispersive Spectroscopy EDS

Coating Campaign

Microscopic Measurement

- X-Rays Photoelectron Spectroscopy XPS
- Scanning Electron Microscopy SEM
- Energy Dispersive Spectroscopy EDS

Microscopic Measurement

- X-Rays Photoelectron Spectroscopy XPS
- Scanning Electron Microscopy SEM
- Energy Dispersive Spectroscopy EDS
- X-Rays Diffraction Measurement -XRD

Microscopic Measurement

Coating Campaign

Coating Campaign - ZrV $\rm H_{\rm p}$ Sticking Probability at 200 $^{\circ}\rm C$ 10⁻¹ **Zr**₁₃**V**₈₇ Grain Size [nm] Sample Cathode 1, 3 mm Zr 28 Zr 1, 3 mm 25 EHT = 5.00 kV WD = 3.5 mm 200 nm Mag = 20.00 K X Zr, V NEG coating #2011015 Up-M1 Maud SCHEUBEL Signal A = InLen Date :3 Feb 2012 10 0.2 0.6 0.8 U.4 Atomic Percentage of Vanadium

Atomic Percentage of Vanadium

Experimental Results

H2 Pumping Speed [l/s]

SAMPLE	3 h at 180°C	9 h at 180°C	24 h at 180°C	24 h at 230°C
Ti	220	462	619	785
Ti	56	433	565	820
Ti	4	4	6	77

H2 Pumping Speed [l/s]

SAMPLE	3 h at 180°C	9 h at 180°C	24 h at 180°C	24 h at 230°C
Ti	220	462	619	785
Ti	56	433	565	820
Ti	4	4	6	77

Conclusions

Conclusions

• Ageing Campaign

Some tested samples have shown problems during the activation

Some tested samples have shown problems during the activation

Coating Campaign

The composition affects the activation temperature

Conclusions

The composition affects the activation temperature

- The composition affects the activation
 - temperature
- The morphology affects the pumping properties

- The composition affects the activation
 - temperature
- The morphology affects the pumping properties
- HfV alloys have a higher activation temperature than ZrV and TiZrHfV

Conclusions

Thank you for your attention