

FTIR spectroscopy at grazing incidence for surface chemical analysis

Gertjan Lippertz

Student Nanoscience & Nanotechnology, KU Leuven, Belgium Internship in the Chemistry Laboratory of TE-VSC-SCC

acuum

- Introduction
- FTIR spectroscopy at grazing incidence
- Experiments on Stainless Steel
 - Baseline Distortions
 - Detection Limit
- Conclusion

Table of Contents

Vacuum Surfaces. Coatings

Introduction

- FTIR spectroscopy at grazing incidence
- Experiments on Stainless Steel
 - Baseline Distortions
 - Detection Limit
- Conclusion

Introduction

- Vacuum Vacuum Surfaces. Coatings
- Current procedure for organic contamination:
 - Extraction with n-Hexane (304 ml/m^2)
 - Deposition of 2 drops of extraction solution on a ZnS cell
 - The n-Hexane evaporates from the cell
 - The organic contamination remains on the surface of the cell and is analysed with FTIR (in transmission)

Transmission spectrum for an organic contaminant

- Disadvantages:
 - n-Hexane is toxic

- The sample has to be dismounted and transported to the chemistry laboratory
- Complex geometries can cause problems
- Only the average surface contamination
- Solubility in n-Hexane

TF

The portable Agilent 4100 ExoScan FTIR

Diamond
ATRDiffuse
ReflectanceGrazing
Angle 82°Image: Strain Str

For the identification of polymers, powders For the measurement of rough surfaces For the measurement of thin films $(d < \lambda)$

- A contract of the second secon
- Detection of Silicones down to 0.1 µg/cm²
 - Stainless Steel
 - Copper
 - Aluminum
- Detection of Hydrocarbons down to 0.1 µg/cm²
 - Copper
 - Aluminum
 - Stainless Steel \rightarrow Problems

0.1 Mg/ CIM2 = 1 IMOMOLATYER

lacuum

- Introduction
- FTIR spectroscopy at grazing incidence
- Experiments on Stainless Steel
 - Baseline Distortions
 - Detection Limit
- Conclusion

FTIR at grazing incidence

Vibrational Spectroscopy

Requirements for excitation:

- Oscillating dipole moment μ
- Alignment of the electric field vector of the radiation with the oscillating dipole

For CO₂, which is a linear molecule, there are 3(3) - 5 = 4 fundamental vibrations:

Polarization of light

- P-polarized light → parallel to the plane of incidence
- S-polarized light → *perpendicular* to the plane of incidence

Image charge

How to excite this vibration?

In conclusion: Good absorbance only for a large angle of incidence θ

acuum

- Introduction
- FTIR spectroscopy at grazing incidence
- Experiments on Stainless Steel
 - Baseline Distortions
 - Detection Limit
- Conclusion

Film Induced Baseline Distortions

Baseline Distortions

Roughness Induced Baseline Distortions

Light only 'sees' objects larger or approximately equal to its wavelength

acuum arfaces...

Baseline Distortions

Film Induced Baseline Distortions

- The angle of incidence for the metal surface changes
- Higher refractive index

Baseline Distortions

Vacuum Surfaces.. Coatings

Calculation of the baseline (MATLAB)

- Approximations:
 - The complex refractive index of *iron* as a function of wavenumber
 - The refractive index of Paraffin: m = 1.472 (pag/D)

 $n_2 = 1.473 (n_{20}/D)$

The calculation will yield:

Only the baseline, not the carbon-hydrogen stretching peaks

Baseline Distortions

Calculation of the baseline (MATLAB)

The higher the concentration, the bigger the baseline distortion But negligible compared to the effect of the roughness

Calculation of the baseline (MATLAB)

Comparison with a Paraffin film on a *electropolished* Stainless Steel surface (experiment)

cuum

The Contamination

- The contamination standard for hydrocarbons:
 - Cutting oil: Blasocut BC 35 LF SW (33 vol%)
 - Machine oil: *Shell Vitrea 150* (33 vol%)
 - Bearing grease: *Kluber Isoflex NBU 15* (33 vol%)
- Dissolve in n-Hexane (for spectroscopy)
- Switch to Paraffin (for spectroscopy)

Detection Limit

Electropolished Stainless Steel Surface

Electropolished

Rough Surface

Sandblasted

Wavenumber [cm⁻¹]

Rough Surfaces

The samples are rougher than the reference

TE-VSC

•

Rough Stainless Steel Sample & Rough Stainless Steel Reference

The more signal is lost, the smaller the peaks become.

- Vacuum Surfaces.. Coatings
- Detection of *Hydrocarbons* on *smooth* Stainless Steel surfaces is possible down to 0.1 µg/cm² (= 1 monolayer)
- Detection on rough surfaces is an issue for – Stainless Steel
 - But possibly also for – Copper – Aluminum

Questions?

Acknowledgements:

Paolo Chiggiato & Mauro Taborelli

The Chemistry Laboratory:

Benoit Teissandier, Colette Charvet, Laetitia Bardo & Radu Setnescu

<u>The Surface Treatment Workshop</u>:

Florent Fesquet, Pierre Maurin & Jacky Carosone

The Polymer Laboratory

• Why Fourier Transform?

Oxidized Stainless Steel TE

- Vacuum Surfaces... Coatings
- Electropolished stainless steel plates
- 300°C for 2.5 days

The Fresnel equations

$$r_p = \frac{(n_2 \cdot \cos(\theta_1) - n_1 \cdot \cos(\theta_2))}{(n_2 \cdot \cos(\theta_1) + n_1 \cdot \cos(\theta_2))}$$

$$r_s = \frac{(n_1 \cdot cos(\theta_1) - n_2 \cdot cos(\theta_2))}{(n_1 \cdot cos(\theta_1) + n_2 \cdot cos(\theta_2))}$$

Snell's law

 $n_1 \cdot sin(\theta_1) = n_2 \cdot sin(\theta_2)$

The reflectance of a thin film on a metal surface (= stratified medium)

$$r_{j} = \frac{r_{12,j} + r_{23,j} \cdot e^{2 \cdot i \cdot \beta}}{1 + r_{12,j} \cdot r_{23,j} \cdot e^{2 \cdot i \cdot \beta}} \quad with \quad (j = p \text{ or } s)$$

$$\boldsymbol{\beta} = \frac{2\pi}{\lambda_0} \cdot \boldsymbol{n}_2 \cdot \boldsymbol{l} \cdot \boldsymbol{cos}(\boldsymbol{\theta}_2)$$

• The reflectance

$$R_j = |r_j|$$

1 12

$$R_u = \frac{R_p + R_s}{2}$$

Spectrum =
$$rac{R_{p,film} + R_{s,film}}{R_{p,no\,film} + R_{s,no\,film}}$$

29 August, 2014

Technology Department

Surfaces... Coatings

The Calculation

29 August, 2014

Vibrational Spectroscopy

$$V_{i\nu} = h\nu_i \left(\nu_i + \frac{1}{2}\right) + h\nu_i x_i \left(\nu_i + \frac{1}{2}\right)^2$$

• Bruker Vertex 70

