

$$B_s \rightarrow J/\psi \phi$$
, $B \rightarrow hh$ and $B \rightarrow hhh$ at LHCb

Vincenzo Vagnoni

INFN Bologna

(on behalf of the LHCb Collaboration)

Beyond the 3SM generation at the LHC era CERN, 5th September 2008

The mixing phase of the B_s meson

The measurement of the mixing phase by CDF and D0 with B_s→J/ψφ have provided a significant discrepancy with the Standard Model

Is it real or just a weird statistical fluctuation?

Is it due to the presence of a fourth generation of other kind of New Physics?

- This is most probably the most important measurement to be performed in the flavour sector at present
- LHCb has a unique opportunity to finally confirm whether the effect is real

Trees, Penguins and some other graph in B→hh decays

We measure direct and mixing induced CP asymmetry coefficients

- $B_s \rightarrow \pi\pi$ and $B_s \rightarrow KK$ can be used to extract γ up to U-spin breaking corrections
 - Hadronic quantities d, θ entering the B_d $\rightarrow \pi\pi$ decay amplitude and d', θ ' entering the B_s \rightarrow KK decay amplitude are defined in ref. R. Fleischer, PLB 459 (1999) 306
- New Physics can show up inside the loops of the penguin diagrams and alter the measurement of g with respect to pure tree measurements
- ◆ Furthermore, B_s→KK is sensitive to New Physics in the B_s mixing
 - Two paths to New Physics, although the validity of the U-spin symmetry is a debated question from a theoretical point of view

B-hhh decays

Branching fractions in

the range $10^{-5} - 10^{-6}$

- hhh corresponds to several channels
 - B+ $\rightarrow \pi^+\pi^+\pi^-$
 - B+ \rightarrow K+ π + π
 - B+→K+K-π+
 - B+→K+K+K-
 - B+ \rightarrow p $\overline{p}\pi^+$
 - B+→ppK+
 - but also e.g. $B_d \rightarrow K_S \pi^+ \pi^-$
- ♦ They contain CKM V_{ub} transitions
 - Hence presence of CP violation
 - Possibility to measure γ ⇒see e.g. I. Bediaga et al., PRD 76, 073011 (2007)
- Also, it is possibile to look for the very rare decays
 - B+ \rightarrow K $^{-}\pi^{+}\pi^{+}$
 - B+→K+K+π⁻
- 3 body analysis
 - Measure resonant state magnitudes and phases → access to additional CP violation information

LHCb detector in one slide

Forward spectrometer operating in the range: 1.8 < h < 4.9

Working luminosity at the LHCb IP: 2-5 x 10³² cm⁻² s⁻¹

(# bb pairs / 2fb⁻¹: 1-2.5 x 10¹²)

Trigger

L0 (hardware trigger): 40 MHz →1 MHz HLT (software trigger): 1 MHz →2 kHz

LHCb performance with B_s→J/ψφ

- LHCb will collect about 114k events in 2 fb⁻¹ of integrated luminosity (one nominal year of data taking) with very high purity
 - The statistical precision so achievable on $2\beta_s$ for L=2/fb is estimated to be 0.03 rad
 - Largely able to pinpoint the mixing phase if the Tevatron hints are real

Performance for B→hh

◆ LHCb will collect an unprecedented number of B→hh

decays	$\pi^{\scriptscriptstyle +}, K^{\scriptscriptstyle +}$
	π , K-
IP ₂ L	

The state of the s	$B_d \rightarrow \pi\pi$	$B_d \rightarrow K\pi$	$B_s \rightarrow KK$	$B_s \rightarrow \pi K$
L=0.01 fb-1	0.18k	0.69k	0.18k	0.05k
L=0.5 fb ⁻¹	9k	34.5k	9k	2.5k
L=2 fb-1	36k	138k	36k	10k
B/S	0.5	<0.06	0.15	1.9

Using RICH information

Invariant mass

B₀ $\rightarrow \pi^*\pi$ B₀ $\rightarrow \pi^$

Thanks to its unique RICH system, the different B→hh samples will be perfectly isolated

If not using RICH info

CP measurements with flavour specific modes

- Amongst the first measurements LHCb can do
 - No tagging nor proper time required
- B_d→K⁺π⁻ dominating due to f_d and BR
 - PID important to clean up the sample from $B_d \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$
 - $\sigma_{\text{stat}}(A_{K\pi}) \cong 0.006$ already with L=0.5/fb
- B_s→π⁺K⁻ more difficult due to lower f_s and BR
 - 16 times less abundant and same signature as B_d→K⁺π⁻
 - $\sigma_{\text{stat}}(A_{\pi K}) \cong 0.04 \text{ with L=0.5/fb}$

γ measurement with CP eigenstates $B_d \rightarrow \pi\pi$ and $B_s \rightarrow KK$ (L=2fb⁻¹)

Minimal use of U-spin symmetry assumptions

- The strong phases θ and θ' of the B_d→ππ and B_s→KK amplitudes are left free to be fitted independently
 - i.e. no U-spin assumption at all
- For the strong magnitudes d and d'instead, they are assumed to be identical, but up to a 20% U-spin breaking
 - as to say d = d' ± 20%

Sensitivities

- $\sigma(\gamma) = 10^\circ$
- $\sigma(\theta) = 9^{\circ}$
- $\sigma(d) = 0.18$

LHCb performance for B→hhh

- Very large event yields expected
 - About 2 orders of magnitude more than B factories
 - Good purity
 - Rich potential for nice physics results!

	Yield (2/fb)	S/B	BR (times 10 ⁵)
B+→π+π+π-	142k	1.4	1.6
B⁺→K⁺π⁺π⁻	494k	3.1	5.6
B+→K+K-π+	39k	0.3	0.5
B+→K+K+K-	236k	21	3.0
B+ → p p π+	22k	0.2	0.3
B⁺→p p K⁺	39k	1.5	0.6

Lower efficiency due to transverse momentum cut

γ measurement from B→hhh

- Possibility to extract γ by combining B+→K+π+π- and B_d→K_S π+π-
 - I. Bediaga et al., PRD 76, 073011 (2007)
- Event yield of B_d→K_Sπ⁺π⁻ significantly smaller due to the presence of the K_S
 - 50% of the K_S can fly and decay after the vertex detector → lower precision of tracks
 - or even worse 25% can decay after the TT tracking chambers behind the magnet → no momentum measured → tracks are definitively lost
 - Nevertheless, 90k of $B_d \rightarrow K_S \pi^+ \pi^-$ can be collected with an integrated luminosity of 2/fb
 - To be compared with 494k for B+ \rightarrow K+ π + π -
- Ideal toy MC studies indicate that we can reach a sensitivity as good as 5° with L=2/fb with this method

Conclusions

- LHCb will play a crucial role in establishing the existence of New Physics in the B_s mixing
 - If the central value measured at the Tevatron is real, LHCb should be able to confirm it already in 2009
 - assuming that LHC will deliver to IP8 a few hundreds of pb⁻¹
- Other interesting possibilities for spotting out New Physics come from decays involving penguin graphs
 - LHCb will enlarge the available statistics of charmless two and three body decays by orders of magnitude
- Looking forward for the first collisions...