$B_{s} \rightarrow J / \psi \phi, B \rightarrow h h$ and $B \rightarrow h h h$ at LHCb

Vincenzo Vagnoni

INFN Bologna
(on behalf of the LHCb Collaboration)

Beyond the 3SM generation at the LHC era
CERN, $5^{\text {th }}$ September 2008

The mixing phase of the B_{s} meson

The measurement of the mixing phase by CDF and D0 with $B_{s} \rightarrow J / \psi \phi$ have provided a significant discrepancy with the Standard Model

Is it real or just a weird statistical fluctuation?

Is it due to the presence of a fourth generation of other kind of New Physics?

- This is most probably the most important measurement to be performed in the flavour sector at present
- LHCb has a unique opportunity to finally confirm whether the effect is real

Trees, Penguins and some other graph in $\mathrm{B} \rightarrow$ hh decays

$B_{s} \rightarrow \pi \pi$ and $B_{s} \rightarrow K K$ can be used to extract γ up to U-spin breaking corrections

We measure direct and mixing induced
CP asymmetry coefficients

$$
\begin{aligned}
& C_{\pi^{+} \pi^{-}}=f_{1}(d, \vartheta, \gamma) \\
& S_{\pi^{+} \pi^{-}}=f_{2}(d, \vartheta, \gamma, \beta) \\
& C_{K^{+} K}=f_{3}\left(d^{\prime}, \vartheta^{\prime}, \gamma\right) \\
& S_{K^{+} K^{-}}=f_{4}\left(d^{\prime}, \vartheta^{\prime}, \gamma, \beta_{s}\right)
\end{aligned}
$$

- Hadronic quantities d, θ entering the $B_{d} \rightarrow \pi \pi$ decay amplitude and d', θ^{\prime} entering the $B_{s} \rightarrow$ KK decay amplitude are defined in ref. R. Fleischer, PLB 459 (1999) 306
- New Physics can show up inside the loops of the penguin diagrams and alter the measurement of g with respect to pure tree measurements
Furthermore, $B_{s} \rightarrow K K$ is sensitive to New Physics in the B_{s} mixing
- Two paths to New Physics, although the validity of the U-spin symmetry is a debated question from a theoretical point of view

$B \rightarrow$ hhh decays

hhh corresponds to several channels

- $\mathrm{B}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{+} \pi^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{+}$

Branching fractions in the range $10^{-5}-10^{-6}$

- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{+} \mathrm{K}^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{p} \overline{\mathrm{p}} \pi^{+}$
- $\mathrm{B}^{+} \rightarrow \mathrm{p} \overline{\mathrm{p}} \mathrm{K}^{+}$
- but also e.g. $B_{d} \rightarrow K_{s} \pi^{+} \pi^{-}$
- They contain CKM V $\mathrm{Vb}_{\text {b }}$ transitions
- Hence presence of CP violation
- Possibility to measure $\gamma \rightarrow$ see e.g. I. Bediaga et al., PRD 76, 073011 (2007)

Also, it is possibile to look for the very rare decays

- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{-} \pi^{+} \pi^{+}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{+} \pi^{-}$

3 body analysis

- Measure resonant state magnitudes and phases \rightarrow access to additional CP violation information

LHCb LHCb detector in one slide

Forward spectrometer operating in the range: $1.8<h<4.9$

Working luminosity at the LHCb IP: 2-5 $\times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
(\# bb pairs $/ 2 \mathrm{fb}^{-1}: 1-2.5 \times 10^{12}$)

Trigger
L0 (hardware trigger): $40 \mathrm{MHz} \rightarrow 1 \mathrm{MHz}$
HLT (software trigger): $1 \mathbf{M H z} \boldsymbol{\rightarrow} \mathbf{2 k H z}$

LHCb LHCb performance with $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$

LHCb will collect about 114k events in $2 \mathrm{fb}^{-1}$ of integrated luminosity (one nominal year of data taking) with very high purity

- The statistical precision so achievable on $2 \beta_{s}$ for $L=2 / f b$ is estimated to be 0.03 rad
- Largely able to pinpoint the mixing phase if the Tevatron hints are real

Performance for $\mathrm{B} \rightarrow \mathrm{hh}$

- LHCb will collect an unprecedented number of $B \rightarrow h h$ decays
- Thanks to its unique RICH system, the different $B \rightarrow$ hh samples will be perfectly isolated

If not using RICH info

CP measurements with flavour specific modes

Amongst the first measurements LHCb can do

- No tagging nor proper time required
- $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{+} \pi^{-}$dominating due to f_{d} and BR
- PID important to clean up the sample from $B_{d} \rightarrow \pi^{+} \pi^{-}$and $B_{s} \rightarrow K^{+} K^{-}$
- $\sigma_{\text {stat }}\left(A_{\kappa \pi}\right) \cong 0.006$ already with $L=0.5 / f b$

LHCb

Minimal use of U-spin symmetry assumptions

- The strong phases θ and θ ' of the $B_{d} \rightarrow \pi \pi$ and $B_{s} \rightarrow K K$ fitted independently at all
- For the strong magnitudes d and d' instead, they are

Sensitivities

- $\sigma(\gamma)=10^{\circ}$
- $\sigma(\theta)=9^{\circ}$
- $\sigma(\Delta \theta)=17^{\circ}$
- $\sigma(\mathrm{d})=0.18$
amplitudes are left free to be
- i.e. no U-spin assumption assumed to be identical, but up to a 20% U-spin breaking
- as to say d=d' $\pm 20 \%$

γ measurement with CP eigenstates $B_{d} \rightarrow \pi \pi$ and $B_{s} \rightarrow K K$

 ($\mathrm{L}=2 \mathrm{fb}^{-1}$)

Very large event yields expected

- About 2 orders of magnitude more than B factories
- Good purity
- Rich potential for nice physics results!

	Yield (2/fb)	S/B	BR (times 10^{5})
$\mathrm{B}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$	142 k	1.4	1.6
$\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \pi^{+} \pi^{-}$	494 k	3.1	5.6
$\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{+}$	39 k	0.3	0.5
$\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{+} \mathrm{K}^{-}$	236 k	21	3.0
$\mathrm{~B}^{+} \rightarrow \mathrm{p} \overline{\mathrm{p}} \pi^{+}$	22 k	0.2	0.3
$\mathrm{~B}^{+} \rightarrow \mathrm{p} \overline{\mathrm{p}} \mathrm{K}^{+}$	39 k	1.5	0.6

Lower efficiency due to transverse momentum cut

Possibility to extract γ by combining $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{+} \pi^{-}$and $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{-}$

- I. Bediaga et al., PRD 76, 073011 (2007)
- Event yield of $B_{d} \rightarrow K_{s} \pi^{+} \pi^{-}$significantly smaller due to the presence of the K_{S}
- 50% of the K_{s} can fly and decay after the vertex detector \rightarrow lower precision of tracks
- or even worse 25% can decay after the TT tracking chambers behind the magnet \rightarrow no momentum measured \rightarrow tracks are definitively lost
- Nevertheless, 90 k of $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{-}$can be collected with an integrated luminosity of $2 / \mathrm{fb}$
- To be compared with 494 k for $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{+} \pi^{-}$
- Ideal toy MC studies indicate that we can reach a sensitivity as good as 5° with $\mathrm{L}=2 / \mathrm{fb}$ with this method

Conclusions

- LHCb will play a crucial role in establishing the existence of New Physics in the B_{s} mixing
- If the central value measured at the Tevatron is real, LHCb should be able to confirm it already in 2009
- assuming that LHC will deliver to IP8 a few hundreds of $\mathbf{p b}^{-1}$
- Other interesting possibilities for spotting out New Physics come from decays involving penguin graphs
- LHCb will enlarge the available statistics of charmless two and three body decays by orders of magnitude
- Looking forward for the first collisions...

