$sin (2\beta_s)$ status from CDF

Juan Pablo Fernández Ramos
C.I.E.M.A.T.
05/09/2008

Introduction

Beyond the Standard Model

- CP violation in B⁰_s meson system is an excellent way to search for new physics
 - B-factories have established that, at tree level, NP effects, if existing in B^0 , B^+ decays, have a magnitude < O(10%). However, there exists an important corner not explored by them: the B^0_s system
 - CP violation in B⁰_s predicted to be extremely small in the SM.
 - Contribution from new physics could come through the enhancement of loop processes

What Is what we measure?

look at any difference in properties like decay rate, angular decomposition of the amplitude, etc between a decay and its "mirror image" resulting from C and P transformations

Neutral B_s system

• Time evolution of B_s flavor eigenstates from Schrödinger equation:

$$i\frac{d}{dt}\left(\begin{array}{c}B_s^0(t)\\\overline{B}_s^0(t)\end{array}\right) = H\left(\begin{array}{c}B_s^0(t)\\\overline{B}_s^0(t)\end{array}\right) \equiv \underbrace{\left[\left(\begin{array}{cc}M_0 & M_{12}\\M_{12}^* & M_0\end{array}\right) - \frac{i}{2}\underbrace{\left(\begin{array}{cc}\Gamma_0 & \Gamma_{12}\\\Gamma_{12}^* & \Gamma_0\end{array}\right)\right]}_{\text{decay matrix}}\left(\begin{array}{c}B_s^0(t)\\\overline{B}_s^0(t)\end{array}\right)$$

The magnitude of the box diagram gives the oscillation frequency

$$\Delta m_s = m^H - m^L \approx 2|M_{12}|$$
; $\Delta m_s = 17.77 \pm 0.12 \text{ ps}^{-1} \text{(CDF)}$

- The phase of the diagram gives the complex number $q/p = e^{-i \phi s}$ where $\phi_s = arg (-M_{12}/\Gamma_{12})$ [CP-violating phase]
- Mass eigenstates have different decay widths (lifetimes)

$$\Delta\Gamma = \Gamma_{\rm I} - \Gamma_{\rm H} \approx 2 |\Gamma_{\rm 12}| \cos \phi_{\rm s}$$
; $\Delta\Gamma = 0.07 \pm 0.04~ps^{-1}$ [A.Lenz et al, JHEP06(2007)072]

• Mixing phase – sensitive to NP $|B_S^{\prime\prime}|$

CP Violation in the S.M $(B_s^0 \rightarrow J/\psi \phi)$

• The chance to observe CP violation comes from interference between decay-only and decay-through-mixing amplitudes

CP violation phase β_s in SM is predicted to be very small

Experiment Overview

Introduction to the CDF II detector

CDF II detector includes (relevant to this analysis)

- Central tracking: silicon vertex detector surrounded by a drift chamber
 - p_T resolution $\Delta p_T/p_T = 0.0015 p_T$
 - vertex resolution ~ 25 μm
- Particle identification (PID): $dE/dx \sim 1.5 \sigma$ separation for K/pi with p>2 GeV and TOF ~2 σ K/pi with p<1.5-1.8 GeV.
- Good e and μ identification by calorimeters and muon chambers

Excellent performance of Tevatron accelerator

→ excellent mass and vertex rec.

- CDF has already 4 fb⁻¹ on tape
- Expect 6-8 fb⁻¹ by end of the run 2
- This analysis uses 2.8 fb⁻¹ (but

equivalent to 2.0 fb⁻¹, no PID 2nd half)

- B_s^0 travels ~ 450 µm before decaying into J/ψ and ϕ
- Spin-0 B_s⁰ decays to spin-1 J/ ψ and spin-1 ϕ \Rightarrow final states with l = 0, 2 (CP-even) and l = 1 (CP-odd)
- Maximum sensitivity to phase (sin $2\beta_s$) depends on decay time resolution and separation of CP at decay and initial flavour of B_s^0/\overline{B}_s^0
- Purpose: disentangle all these features and measure the phase8

Measurement Strategy

- Reconstruct $B_s^0 \to J/\psi(\to \mu^+\mu^-) \phi(\to K^+K^-)$
- Use angular properties of the J/ ψ ϕ decay to separate angular momentum states which correspond to CP eigenstates
- Identify initial state of B_s meson (flavour tagging) and thus separate time evolution of B_s^0 and \overline{B}_s^0 to maximize sensitivity to CP asymmetry (sin $2\beta_s$)
- Perform un-binned maximum likelihood fit to extract signal parameters of interest (e.g. β_s , $\Delta\Gamma = \Gamma_L \Gamma_H$)

$B_s^0 \rightarrow J/\psi \phi$ Signal Selection

- Use an artificial neural network (ANN) to efficiently separate signal from background
- ANN training
 - Signal from Monte Carlo reconstructed as it is in data
 - Bkg. from J/ψφ sidebands
- Variables used in network
 - B_s^0 : p_T and vertex prob.
 - J/ψ : p_T and vertex prob.
 - \bullet ϕ : mass and vertex prob.
 - K^+, K^- : p_T (NO PID)

 $N(B_s^{\ 0}) \sim 3200$ (with PID expect ~3800)

Angular Analysis of Final States

Maximum sensitivity to phase if *CP*-even *and CP*-odd states are separated

We start with a sample of

$$B_s^0$$
 and $\bar{B}_s^0 \rightarrow J/\psi \phi$ $(J/\psi \rightarrow \mu^+ \mu^-, \phi \rightarrow K^+ K^-)$

and we measure the time when each decay occurred.

Then, we need to know the CP of the final state ...

but we can only do it on a statistical basis

- $^{\prime}$ •B → VV (our B_s⁰ → J/ψ φ but also B⁰ → J/ψ K*⁰ , ...) decay to two CP even states (S-wave or D-wave) and one CP odd (P-wave)
- Alternatively to the S,P,D-wave states one can use the "transversity basis": three independent components that use the vector mesons polarizations w.r.t. their direction of motion (pol.states $P_0, P_\parallel, P_\perp$)
- the "transversity angles" $(\theta_T, \phi_T, \psi_T)$ are sensitive to the polarizations

Analytical relationships from A.S.Dighe, et al, EPJ C6 (1999) 647 Angular correlations in decay products ⇒ separation of CP-components

Flavor Tagging

Maximum sensitivity to phase if B_s^0 and B_s^0 separated

We have a sample of

$$B_s^0$$
 and $\bar{B}_s^0 \rightarrow J/\psi \phi$ $(J/\psi \rightarrow \mu^+ \mu^-, \phi \rightarrow K^+ K^-)$

of known decay-time and CP.

It will help to know whether a meson or an anti-meson was produced in the *pp* interaction...

SST: exploits the charge/species correlations with associated particles produced in fragmentation that results in the reconstructed meson

OST: exploits the decay products of the other b-hadron in the event

 The final tag is the combination (properly weighted) of all the different tagging methods

Output: decision (b-quark or \bar{b} -quark) and the quality of that decision

Quantifying Tagging Power

- To quantify tagging we use:
 - Efficiency $\varepsilon = N_{\text{tagged}} / N_{\text{total}} = (N_{\text{RS}} + N_{\text{WS}}) / (N_{\text{RS}} + N_{\text{WS}} + N_{\text{NT}})$
 - "Dilution" $D = P_{tag} P_{mistag} = (N_{RS}-N_{WS})/(N_{RS}+N_{WS})$

Each tag decision comes with an dilution estimate (event-per-event dilution), validated:

1. Using B^{\pm} (OST)

• The statistical power of the tagging is quantified by $\varepsilon < D^2 >$ typically 4.8 % as detailed next.

$$\varepsilon = 96 \pm 1\%$$
 $\sqrt{\text{D}^2} = 11 \pm 2 \%$
 $\varepsilon < \text{D}^2 > = 1.2 \%$

SST

OST Predicted Dilution

$$\varepsilon = 50 \pm 1\%$$

 $\sqrt{\text{CD}^2} = 27 \pm 4\%$
 $\varepsilon < \text{D}^2 > = 3.6 \%$

15

[used in 1st half only]

Un-binned Likelihood Fit

We have a sample of

$$B_s^0$$
 and $\bar{B}_s^0 \rightarrow J/\psi \phi (J/\psi \rightarrow \mu^+ \mu^-, \phi \rightarrow K^+ K^-)$

of "known" decay-time, CP and production flavor.

But this information is not know on a per-candidate basis. Wrap it up in a fit.

Overview of fit

Single event likelihood decomposed and factorized in: $f_s P_s(m|\sigma_m) P_s(t, \vec{\rho}, \xi|\mathcal{D}, \sigma_t) P_s(\sigma_t) P_s(\mathcal{D})$

$$+(1-f_s)P_b(m)P_b(t|\sigma_t)P_b(\vec{
ho})P_b(\sigma_t)P_b(\sigma_t)$$

 P_s : probability distribution functions (PDFs) for signal P_b : PDFs for background

 f_s : signal fraction (fit parameter)

- Measured quantities that enter in the fit and their PDFs
 - reconstructed mass of B_s^0 , \overline{B}_s^0 and its error, decay time and its error, transversity angles, flavour tag decision, dilution D
 - Parameters in the fit : the relevant ones : β_s , $\Delta\Gamma$
- plus many nuisance parameters: mean width $\Gamma = (\Gamma_L + \Gamma_H)/2$,

$$|A_{\parallel}(0)|^2$$
, $|A_{\parallel}(0)|^2$, $|A_{0}(0)|^2$, $\delta_{\parallel} = \arg(A_{\parallel} A_{0}^*)$, $\delta_{\perp} = \arg(A_{\perp} A_{0}^*)$...

Results

Both CDF and D0 have published their 1st determination of bounds on mixing-induced CP violation in $B_s^{\ 0} \to J/\psi \ \phi$ (references bellow). Today I will show :

- \rightarrow new $(2\beta_s, \Delta\Gamma)$ confidence region (CDF, 2.8 fb⁻¹, ~2 fb⁻¹ equiv.)
- \rightarrow new $2\beta_s$ confidence interval (CDF, 2.8 **fb**⁻¹, ~2 **fb**⁻¹ equiv.)

[the results are not intended to be published, just an update for ICHEP, next publication: PRD in winter with full PID and ~4 **fb**⁻¹]

→ combined CDF and D0 (from previous measurements, Phys. Rev. Lett. 100, 161802 [2008, CDF 1.35 **fb**⁻¹] and arXiv:0802.2255 [hep-ph, 2008, D0 2.8 **fb**⁻¹])

Likelihood

Symmetry in likelihood expression :

$$2\beta_s \to \pi - 2\beta_s \,, \; \Delta\Gamma \to -\Delta\Gamma, \, \delta \, \to 2\pi - \delta, \, \delta_\perp \to \; \pi - \delta_\perp$$

- These yield multiple solutions with non-Gaussian uncertanties, biased estimates, etc
- → Point estimate irrealistic → quote confidence region

• using profile likelihood ratio ordering with rigorous frequentist inclusion of systematic uncertainties

Probabilistic method has to provide proper coverage

F-C guarantees coverage at quoted C.L. Accounts for non-asymptotic behavior of likelihood, i.e. log(L) non-parabolic, and possible large fluctuations of L shape from experiment-to-experiment

Excludes a given β_s - $\Delta\Gamma$ pair if it can be excluded for any choice of the 20+ nuisance parameters within 5σ of their estimated values

2D-Likelihood contour

Does **not** has coverage: the resulting confidence region does not contain the true value with desired CL independently of true value

Profile-Likelihood Ratio ordering

Above procedure has been corrected to have right coverage

Example of 2D-L contour vs Profile-L Ratio ordering for the 1.35 fb⁻¹ CDF result

Flavor Tagged $2\beta_s$ - $\Delta\Gamma$ Confidence Region

Confidence region with profile-Likelihood Ratio ordering and rigorous frequentist inclusion of systematic uncertainties. 2D region is projection of a multidimensional region in the space of all (27) fit parameters

Assuming the SM, the probability of observing a fluctuation as large or larger than what observed in data is 7%, corresponding to 1.8σ

Expect to shrink further once PID will be available for full dataset

11

β_s 1D Intervals

- $\Delta\Gamma$ treated as a nuisance parameter
 - \Rightarrow β_s ∈ [0.28, 1.29] at 68% CL

• Assuming no CP violation ($\beta_s = 0$), we also measure

$$c\tau_s = 459 \pm 12 \text{ (stat)} \pm 3 \text{ (syst)} \text{ } \mu\text{m}$$

 $\Delta\Gamma_s = 0.02 \pm 0.05 \text{ (stat)} \pm 0.01 \text{ (syst)} \text{ ps}^{-1}$
and the transversity amplitudes
 $|A_{||}(0)|^2 = 0.241 \pm 0.019 \text{ (stat)} \pm 0.007$

 $|A_0(0)|^2 = 0.508 \pm 0.024 \text{ (stat)} \pm 0.008$

Reminder: DØ published Results

- DØ observes a fluctuation consistent with CDF
- Chooses to quote the results in terms of $\phi_s = -2\beta_s$ (arXiv:0802.2255)
- DØ quotes a point-estimate with strong phases constrained from

$$B^0 \rightarrow J/K^{*0}$$

$$\phi_s = -0.57^{+0.24}_{-0.30}(\text{stat})^{+0.07}_{-0.02}(\text{syst})$$

- This makes the result dependent on theoretical assumptions
- Can be compared to CDF published constrained result
 2β ∈ [0.40,1.20] @ 68% CL

Tevatron combination

Combine CDF and D0 iso-CL regions with no constrains and previously checked for coverage (a' la HFAG):

 2.2σ consistency with SM.

Future

- Tevatron can search for anomalously large values of β_s
- Shown results 2.8 fb⁻¹, but 4 fb⁻¹ already on tape to be analysed soon
- Expect 6-8 fb⁻¹ by the end of the run 2
- Analysis to be improved and optimized:
 - better flavour tagging
 - calibrated PID
 - more statistics from other triggers
- If β_s is indeed large CDF results have good chance to prove it

- CPV in B_s system is one of the main topics in LHC_b B Physics program
 - → will measure mixing phase with great precision

Conclusions

Conclusions

- First update on larger dataset confirms old result and provides tighter constraints (15% to 7% agreement with SM), although several ingredients are still in the works
- Best measurements of B_s decay width difference and one of the best lifetime measurements
- Both CDF and DØ observe 1-2 sigma β_s deviations from SM predictions. SM agreement reduces to 2.2σ when combined.
- Interesting to see how these effects evolve with more data

Back up

Un-binned Likelihood Fit

• Fit with separate PDFs for signal and background

$$f_s P_s(m|\sigma_m) P_s(ct, \vec{\rho}, \xi | \mathcal{D}, \sigma_{ct}) P_s(\sigma_{ct}) P_s(\mathcal{D})$$
$$+ (1 - f_s) P_b(m) P_b(ct|\sigma_{ct}) P_b(\vec{\rho}) P_b(\sigma_{ct}) P_b(\mathcal{D})$$

- $P_s(m|\sigma_m)$ Single Gaussian fit to signal mass
- $P_s(ct, \rho, \xi | D, \sigma_{ct})$ Probability for \overline{B}_s^0/B_s^0
- P_b(m) Linear fit to background mass distribution
- $P_b(ct|\sigma_{ct})$ Prompt background, one negative exponential, and two positing exponentials
- $P_b(\rho)$ Empirical background angle probability distributions
- Use scaled event-per-event errors for mass and lifetime fits and event-per-event dilution

β_s in Untagged Analysis

- Fit for the CPV phase
- Biases and non-Gaussian estimates ₹ 0.25 in pseudo-experiments
- Strong dependence on true values for biases on some fit parameters.

a) Dependence on one parameter in the likelihood vanishes for some values of other parameters:

$$\cos(\delta_{\perp})\sin(2\beta_s)\sinh(\Delta\Gamma t/2)$$

b) L invariant under two transformations:

$$2\beta_s \rightarrow -2\beta_s, \ \delta_{\perp} \rightarrow \delta_{\perp} + \pi$$

→ 4 equivalent minima

$$\Delta\Gamma \rightarrow -\Delta\Gamma$$
, $2\beta_s \rightarrow 2\beta_s + \pi$

Angular Probability Distribution: time evolution

General relation for B-> VV

$$\frac{d^4 P(t, \vec{\rho})}{dt d\vec{\rho}} \propto |A_0|^2 \mathcal{T}_+ f_1(\vec{\rho}) + |A_{\parallel}|^2 \mathcal{T}_+ f_2(\vec{\rho})$$

$$+ |A_{\perp}|^2 \mathcal{T}_- f_3(\vec{\rho}) + |A_{\parallel}| |A_{\perp}| \mathcal{U}_+ f_4(\vec{\rho})$$

$$+ |A_0| |A_{\parallel}| \cos(\delta_{\parallel}) \mathcal{T}_+ f_5(\vec{\rho})$$

$$+ |A_0| |A_{\perp}| \mathcal{V}_+ f_6(\vec{\rho}), \qquad \text{Time dep}$$

 A_0 , A_{\parallel} , A_{\perp} : transition amplitudes to a given polarization state at t=0

Time dependence appears in T, U, V. Different for \mathbf{B}_s^0 and $\mathbf{\bar{B}}_s^0$

$$\frac{d^4P(t,\vec{\rho})}{dtd\vec{\rho}} \propto |A_0|^2 \mathcal{T}_+ f_1(\vec{\rho}) + |A_{\parallel}|^2 \mathcal{T}_+ f_2(\vec{\rho})$$

anti-
$$B_{s}^{0}$$
 + $|A_{\perp}|^{2}$ $T_{-}f_{3}(\vec{\rho})$ + $|A_{\parallel}||A_{\perp}|U_{-}f_{4}(\vec{\rho})$ + $|A_{0}||A_{\parallel}|\cos(\delta_{\parallel})T_{+}f_{5}(\vec{\rho})$ + $|A_{0}||A_{\perp}|V_{-}f_{6}(\vec{\rho})$,

f(): angular distribution for a given polarization state

•
$$\rho = \{\cos \theta_{T}, \phi_{T}, \cos \psi_{T}\}$$

Angular Probability Distribution: time evolution

• Separate terms for B_s^0 , \bar{B}_s^0

$$\mathcal{T}_{\pm} = e^{-\Gamma t} \left[\cosh \left(\frac{\Delta \Gamma}{2} t \right) \mp \cos(2\beta_s) \sinh \left(\frac{\Delta \Gamma}{2} t \right) \mp \eta \sin(2\beta_s) \sin(\Delta m_s t) \right]$$

where $\eta = +1$ for P and -1 for \bar{P}

$$\mathcal{U}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos(2\beta_s) \sin(\Delta m_s t) \right]$$

$$\pm \cos(\delta_{\perp} - \delta_{\parallel}) \sin(2\beta_s) \sinh\left(\frac{\Delta \Gamma t}{2}\right)$$

$$\mathcal{V}_{\pm} = \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(\Delta m_s t) - \cos(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \right]$$

$$\pm \left[\cos(\delta_{\perp}) \sin(2\beta_s) \sinh\left(\frac{\Delta \Gamma t}{2}\right) \right]$$
Terms with Δm_s dependence; they are different for different initial state flavor

 δ_{\parallel} = arg($A_{\parallel} A_0^*$), δ_{\perp} = arg($A_{\perp} A_0^*$) are the phases of A_{\parallel} and A_{\perp} relative to A_0 Knowledge of B_s^0 mixing frequency needed(well measured by CDF- $\frac{3}{2}$ 0)

Systematics

- Systematic uncertainties studied by varying all nuisance parameters +/- 5σ from observed values and repeating LR curves (dotted histograms)
- Nuisance parameters:
 - lifetime, lifetime scale factor uncertainty,
 - strong phases,
 - transversity amplitudes,
 - background angular and decay time parameters,
 - dilution scale factors and tagging efficiency
 - mass signal and background parameters
 - ...

- Take the most conservative curve (dotted red histogram) as final result

CP violating phases: ϕ_s vs β_s

- $2\beta_s = 2 \text{arg} \left[-V_{ts} V_{tb}^* / V_{cs} V_{cb}^* \right] \sim 4.4^\circ \text{ (SM)} \text{ phase of } b \rightarrow ccs$ transition that accounts for interference of decay and mixing+decay
- $\phi_s = arg[-M_{12}/\Gamma_{12}] \sim 0.24^\circ$ (SM) $arg[M_{12}] = arg(V_{tb}V_{ts}^*)^2$ matrix element that connects matter to antimatter through oscillation.
 - $arg[\Gamma_{12}] = arg[(V_{cb}V^*_{cs})^2 + V_{cb}V^*_{cs}V_{ub}V^*_{us} + (V_{ub}V^*_{us})^2]$ width of matter and antimatter into common final states.
 - Both SM values experimentally unaccessible by current experiments (assumed zero). If NP occurs in mixing:

$$\begin{split} & \varphi_{\text{s}} = \varphi_{\text{s}}^{\text{ SM}} + \varphi_{\text{s}}^{\text{ NP}} \thicksim \varphi_{\text{s}}^{\text{ NP}} \\ & 2\beta_{\text{s}} = 2\ \beta_{\text{s}}^{\text{ SM}} - \varphi_{\text{s}}^{\text{ NP}} \thicksim - \varphi_{\text{s}}^{\text{ NP}} \end{split}$$

- ▶ B → VV (our B_s⁰ → J/ψ φ but also B⁰ → J/ψ K*⁰, ...) decay to two CP even states (S-wave or D-wave) and one CP odd (P-wave)
- Alternatively to the S,P,D-wave states one can use the "transversity basis": the three independent components in which the vector mesons polarizations w.r.t. their direction of motion are:
 - longitudinal (0) CP even - transverse but parallel to each other (||)
 - transverse but perpendicular to each other (\(\preceq\)\) CP odd

Each final pol.state $P_0, P_{\parallel}, P_{\parallel}$ has transition amplitude $A_0, A_{\parallel}, A_{\parallel}; \langle B^0 | P \rangle = A_0$ The $\langle B^0_{s,phys}(t) | P \rangle = A(t)$ are convolutions of decay and oscillation

