Constraints on the quark and lepton mixing matrices within a fourth generation scenario from a few simple constraints

Heiko Lacker Humboldt University Berlin

Beyond the 3SM generation at the LHC CERN, 4th and 5th September, 2008

Introductory remarks

- Recent interest in a 4th fermion generation triggered by LHC startup: CKM and PMNS matrix constraints important for search strategies!
- Recent discussion of constraints on 4x4 CKM- & PMNS-elements:
 Kribs et al., Fourth generation and Higgs Physics, PRD76:075016, 2007

CKM: Unitarity constraints + W-decays + D-mixing

PMNS: $\mu \rightarrow e \gamma$, $\mu \rightarrow e$ conversion

Several papers in the past, some even very recent:
 Z→bb, B- & K-system (not considered here)

Content (no rigorous quantitative analysis yet)

- * W-decays (correlation between CKM and PMNS)
- * τ- and μ-decays
- * Other correlations in CKM- and PMNS-element extractions

Mixing in quark sector

Directly measured matrix elements:

$$|V_{CKM}^{4\times4}| = \begin{vmatrix} 0.97418 & 0.2246 & 0.0039 & <0.04 \\ 0.22 & >0.78 & 0.041 & <0.6 \\ <0.08 & <0.40 & >0.78 & <0.65 \\ <0.1 & <0.60 & <0.65 & >0.78 \end{vmatrix}$$

at ~2σ

Limiting factors:

*
$$|V_{tb}|$$
 from single top + $R = \frac{\Gamma(t \to W + b)}{\Gamma(t \to W + q)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$ not well constrained yet

* |V_{cs}| from sl D-decays: still large theoretical error (FF)

(Leptonic D_s-decay: NP-signal? If yes: Not from 4th generation)

Mixing in quark sector

Directly measured matrix elements:

$$|V_{CKM}^{4\times4}| = \begin{vmatrix} 0.97418 & 0.2246 & 0.0039 & <0.04 \\ 0.22 & >0.75 & 0.041 & <0.6 \\ <0.08 & <0.40 & >0.78 & <0.65 \\ <0.1 & <0.60 & <0.65 & >0.78 \end{vmatrix}$$

Constraints discussed by Kribs et al.:

*
$$|V_{tb}|$$
* $\Gamma(W\rightarrow had)$

$$\begin{vmatrix}
V_{CKM}^{4 \times 4} \\
V_{CKM}^{4 \times 4}
\end{vmatrix} = \begin{vmatrix}
0.97418 & 0.2246 & 0.0039 & < 0.04 \\
0.22 & 0.965 & 0.041 & < 0.2 \\
< 0.08 & < 0.15 & > 0.78 & < 0.65 \\
< 0.09 & < 0.17 & < 0.65 & > 0.78
\end{vmatrix}$$

- * D-mixing (Golowich et al., PRD76:095009, 2007) $\rightarrow \left|V_{ud_4}V_{cd_4}^*\right| < 0.002$ Limit dependent on d₄ mass (here 200 GeV used if I read off correctly)
 - => Given the D0 sensitivity to long d₄ lifetimes more or less ok but deserves a closer look

Constraint from W-decays

* BF(W→had) used by Kribs et al. (PDG06) calculated from measured BF(W→lep)!

$$W^{+} - \frac{l^{+} u c}{v_{l} \overline{d}' \overline{s}'} \frac{\Gamma(W \to l v)}{\Gamma(W \to All)} \approx \frac{1}{3 + 3 \sum_{i=u,c} \sum_{j=d,s,b} |V_{ij}|^{2} (1 + \alpha_{s}(M_{W})/\pi)}$$

- * Unitarity check in the first place
- * #families>3: Strong constraint on |V |
- * Consistent with 3x3-Unitarity: $\sum_{j=d,\,s,\,b} |V_{uj}|^2 + \sum_{j=d,\,s,\,b} |V_{cj}|^2 = 2.002 \pm 0.027$

However:

- * Formula (e.g. PDG06) assumes lepton universality!

* 4 generations: lepton universality possibly violated!
$$BF(W \rightarrow \mu \nu) = 0.1057 \pm 0.0015$$

 $BF(W \rightarrow \tau \nu) = 0.1125 \pm 0.0020$

 $BF(W \rightarrow e v) = 0.1075 \pm 0.0013$

$$\frac{\Gamma(W \to l \, \nu)}{\Gamma(W \to All)} \approx \frac{\sum_{k=1,2,3} |U_{lk}|^2}{\sum_{l=e,\,\mu,\,\tau} \sum_{k=1,2,3} |U_{lk}|^2 + 3 \sum_{i=u,\,c} \sum_{j=d,\,s,\,b} |V_{ij}|^2 (1 + \alpha_s (M_W)/\pi)}$$

Mixing in lepton sector: τ- and μ-decays

Constraints on 4th generation from τ mass & (leptonic) BF's:

- * Dova, (Swain & Taylor), NP Proc.Suppl.76:133,1999; (hep-ph/9712383; PRD55:1,1997)
- 1) Since then: Significant improvements in m₇ & BF measurements
- 2) Assumption: Only significant mixing between 3rd and 4th family

W/o this assumption:

$$\begin{split} &\Gamma(\tau^{-} \to l^{-} \bar{\nu}_{l} \nu_{\tau}) \propto G_{F}^{2} \sum_{i=1,2,3} \left| U_{\tau i} \right|^{2} \sum_{k=1,2,3} \left| U_{lk} \right|^{2} \quad l = e / \mu \\ &\Gamma(\tau^{-} \to h \nu_{\tau}) \propto G_{F}^{2} f_{h}^{2} \left| V_{uj} \right|^{2} \sum_{i=1,2,3} \left| U_{\tau i} \right|^{2} \quad j = d(\pi) / s(K) \\ &\Gamma(h^{-} \to \mu^{-} \nu_{\mu}) \propto G_{F}^{2} f_{h}^{2} \left| V_{uj} \right|^{2} \sum_{i=1,2,3} \left| U_{\mu j} \right|^{2} \quad j = d(\pi) / s(K) \end{split}$$

$$\Gamma(\mu^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\mu}) \propto G_{F}^{2} \sum_{i=1,2,3} |U_{\mu i}|^{2} \sum_{k=1,2,3} |U_{ek}|^{2}$$

CKM- & PMNS-matrix: W→lep & τ-/μ-decays

Constraints on PMNS elements:

$$|U^{4\times4}| = \begin{vmatrix} * & * & * & <0.2 \\ * & * & * & <0.2 \\ * & * & * & <0.2 \\ <0.25 & <0.25 & <0.25 & >0.9 \end{vmatrix}$$

IF G_F is constrained to vary by 5% around its standard value

PMNS constraints are sufficiently strong to improve CKM constraints from $\Gamma(W\rightarrow l\nu)$ but less constraining compared to constraint assuming lepton universality in such a case

Constraints on CKM elements:

$$\begin{vmatrix}
V_{CKM}^{4\times4} \\
V_{CKM}^{4\times4}
\end{vmatrix} = \begin{vmatrix}
0.97418 & 0.2246 & 0.0039 & <0.04 \\
0.22 & 0.965 & 0.041 & <0.3 \\
<0.08 & <0.3 & >0.78 & <0.65 \\
<0.09 & <0.3 & <0.65 & >0.78
\end{vmatrix}$$

Other areas to look at

• Determination of $|V_{ud}|$: $|V_{ud}| = 0.97418 \pm 0.00026$ (superallowed β -decays)

With 4th generation:

$$\Gamma(\beta \text{-}decay) \propto G_F^2 |V_{ud}|^2 \sum_{k=1,2,3} |U_{ek}|^2 \\ \Gamma(\mu^- \to e^- \overline{\nu}_e \nu_\mu) \propto G_F^2 \sum_{i=1,2,3} |U_{\mu i}|^2 \sum_{k=1,2,3} |U_{ek}|^2 \\ \Gamma(\mu^- \to e^- \overline{\nu}_e \nu_\mu) \propto G_F^2 \sum_{i=1,2,3} |U_{\mu i}|^2 \sum_{k=1,2,3} |U_{ek}|^2$$

1σ-overestimation of $|V_{ud}|$: $|U_{\mu 4}| = 0.023$!

- Determination of |V_{us}|:
 - 1. Separate averages for K_{e3} versus K_{u3} decays mandatory
 - 2. $K_{\mu 2}/\pi_{\mu 2}$ decays: dependency on lepton sector cancels

Summary

• Combined 4th generation analysis of CKM- & PMNS-matrix with a rigorous treatment of the correlations missing so far

Quantitative analysis presented very preliminary: many things to be studied

- Leptons: μ- and τ-decays
 - => some constraints on 4th generation PMNS elements if G_F could be constrained using additional constraints
- Quarks: $\Gamma(W \rightarrow Iv)$ together with μ & τ -decays
 - => Constraint on $|V_{cs}|$ only as good as one using lepton universality if $G_{\mbox{\tiny c}}$ can be constrained
 - => 3rd (1st/2nd) -4th mixing can be still very (reasonably) large (--> searches)
- Other CKM element extractions need to be considered as well, e.g.:

$$|V_{ud}| \rightarrow |V_{ud}|/\Sigma |U_{\mu i}|$$
, K_{e3} versus $K_{\mu 3}$ decays

 (K_{u2}/π_{u2}) : dependency on lepton sector cancels)