Saleh SULTANSOY

with E. Arık, M. Arık, A. Çelikel, S.A. Çetin, A. K. Çiftçi, R. Çiftçi, T. Çuhadar Donszelman, M. Karagöz Ünel, V.E. Özcan and G. Ünel

1. Why the Four SM Familfies
2. The Fourth SM Family at hadron colliders
3. The Fourth SM Family at the CLIC

First approach - Why not ?

$\mathbf{N} \geq \mathbf{3}$ from LEP data

$\mathrm{N}<9$ from asymptotic freedom
"A 4th generation of ordinary fermions is excluded to 99.999% CL on the basis of S parameter alone"

PDG 2006

This conclusion is wrong.
Graham Kribs, CERN Aug 2007

Precision EW data:

2000: the 4th family excluded at 99\% CL 2002: 3 and 4 families have the same status 5 and even 6 families are allowed if mN ₹ 50 GeV

2004: $6^{\text {² }}$ th SM family is excluded at 3σ... 2007: with 4 SM families Higgs masses between 115-750 GeV are allowed
H.J. Su, N. Polonsky and S. Su, Phys. Rev. D 64 (2001) 117701
V.A. Novikov, L.B. Okun, A.N. Rosanov and M.I. Vysotsky, Phys. Lett. B 529 (2002) 111
G.D. Kribs, T. Plehn, M. Spannowsky, T.M.P. Tait, Phys. Rev. D 76 (2007) 075016
S. Sultansoy, CERN May 16, 2006

Second Approach -

Flavor Democracy favors the Fourth SM Family

ary* Particle

family	\boldsymbol{V}	\boldsymbol{I}	\boldsymbol{U}	\boldsymbol{d}
1	$<3 \mathrm{eV}$	$510.99892(4) \mathrm{keV}$	1.5 to 4 MeV	4 to 8 MeV
2	$<190 \mathrm{keV}$	$105.658369(9) \mathrm{MeV}$	1.15 to 1.35 GeV	80 to 130 MeV
3	$<18.2 \mathrm{MeV}$	$1.77699(+29-26) \mathrm{GeV}$	$171.2(521) \mathrm{GeV}$	4.1 to 4.4 GeV
4	$>45 \mathrm{GeV}$	$>100 \mathrm{GeV}$	$>310 \mathrm{GeV}$	$>130 \mathrm{GeV}$

Also,	$m_{\gamma}=0\left(10^{-18} \mathrm{eV}\right)$	$m_{\mathrm{g}}=0(<\mathrm{few} \mathrm{MeV})$
	$m_{\mathrm{w}}=80.396(25) \mathrm{GeV}$	$\mathrm{m}_{\mathrm{z}}=91.1876(21) \mathrm{GeV}$
	$m_{\mathrm{H}}>114.4 \mathrm{GeV}$	
Scale:	$\eta \approx 247 \mathrm{GeV}$	

Elementary in the SM framework. At least one more level (preons) should exist.

PDG 2008

Quark Summary Table

b^{\prime} (4 ${ }^{\text {th }}$ Generation) Quark, Searches for

Mass $m>190 \mathrm{GeV}, \mathrm{CL}=95 \% \quad\left(p \bar{p}\right.$, quasi-stable $\left.b^{\prime}\right)$
Mass $m>199 \mathrm{GeV}, \mathrm{CL}=95 \% \quad(p \bar{p}$, neutral-current decays)
Mass $m>128 \mathrm{GeV}, \mathrm{CL}=95 \% \quad(p \bar{p}$, charged-current decays)
Mass $m>46.0 \mathrm{GeV}, \mathrm{CL}=95 \% \quad\left(e^{+} e^{-}\right.$, all decays)

$\boldsymbol{t}^{\prime}\left(4^{\text {th }}\right.$ Generation) Quark, Searches for

$$
\text { Mass } m>256 \mathrm{GeV}, \mathrm{CL}=95 \% \quad\left(p \bar{p}, t^{\prime} \bar{t}^{\prime} \text { prod., } t^{\prime} \rightarrow W q\right)
$$

Free Quark Searches

All searches since 1977 have had negative results.

In standard approach:

$$
m_{f}=g_{f} \eta \quad(\eta \approx 245 \mathrm{GeV})
$$

$$
g_{t} / g_{e}=0\left(m_{t} / m_{e}\right) \approx 340000
$$

Moreover,

$$
g_{t} / g_{v e} \approx 1.75 \cdot 10^{11}\left(\text { (if } m_{v e}=1 \mathrm{eV}\right)
$$

compare with $\mathrm{m}_{\mathrm{GUT}} / \mathrm{m}_{\mathrm{W}} \sim 10^{13}$
However, see-saw mechanism ...

For same type fermions:

$$
\begin{aligned}
& g_{t} / g_{u} \approx 35000 \div 175000, \quad g_{b} / g_{d} \approx 300 \div 1500 \\
& g_{\tau} / g_{e} \approx 3500
\end{aligned}
$$

Within third family:

$$
g_{t} / g_{b} \approx 40
$$

$$
g_{t} / g_{\tau} \approx 100,
$$

$$
g_{t} / g_{v \tau}>10000
$$

et cetera Therefore, 3 family case is unnatural

Hierarchy: $m_{u} \ll m_{c} \ll m_{t} \quad m_{d} \ll m_{s} \ll m_{b} \quad m_{e} \ll m_{\mu} \ll m_{\tau}$

Today, the mass and mixing patterns of the fundamental fermions are the most mysterious aspects of the particle physics. Even the number of fermion generations is not fixed by the Standard Model

The statement of the Flavor Democracy (or, in other words, the Democratic Mass Matrix approach)
H. Harari, H. Haut and J. Weyers, Phys. Lett. B 78 (1978) 459;
H. Fritzch, Nucl. Phys. B 155 (1979) 189; B 184 (1987) 391;
P. Kaus and S. Meshkov, Mod. Phys. Lett. A 3 (1988) 1251;
H. Fritzch and J. Plankl, Phys. Lett. B 237 (1990) 451.
which is quite natural in the SM framework, may be considered as the interesting step in true direction.

It is intriguing, that Flavor Democracy favors the existence of the fourth SM family
H. Fritzsch, Phys. Lett. B 289 (1992).
A. Datta, Pramana 40 (1993) L503.
A. Celikel, A.K. Ciftci and S. Sultansoy, Phys. Lett. B 342 (1995) 257.

Moreover, Democratic Mass Matrix approach provide, in principle the possibility to obtain the small masses for the first three neutrino species without see-saw mechanism
J. L. Silva-Marcos, Phys Rev D 59 (1999) 091301

The fourth family quarks, if exist, will be copiously produced at the LHC

ATLAS Detector and Physics Performance TDR, CERN/LHCC/99-15 (1999), p. 663-

Then, the fourth family leads to an essential increase of the Higgs boson production cross section via gluon fusion at hadron colliders and this effect may

ATLAS DETECTOR AND PHYSICS PERFORMANCE

Technical Design Report

Issus:
Revisibry
Refercone
Retannax:
Crassus:
1.ast modined:

Prepared By:

1
0
ATLAS TDR 15, CEEN/LHCC99-15
25 Mza 1003
25 May 1509
ATLAS Collatoration
17.3.3 Bakground arulysis
17.34 Evanation of signal and background statistics
17.3.5 Determination of the proper-time resolution .
17.3.6 Extractiso of reat
17.3.7 Depsndence of rach on expscimental quantitiss 17.3 .8 Conclusions
17.4 Rare decays $B \rightarrow \mu(0)$
17.4.1 Introdution
17.4.2 Thecrstialal approact
17.4.3 Simulation of cree B-decy evints
17.4.4 The measurenent of the forward-backward asymmetry 17.4.5 Conclusions
17.5 Frocision mezarcments of B hadrons.
17.5 .1 Mesaurcments wilh the E8 meson
17.5 .2 polarization
$17.5 .2 A_{4}$ polarisation measurcmant
17.6 Conclusions on the E -plysiss potential

Heavy quark and leptors
18.1 Top quark pryzics.
18.1.1 Introduation
18.1 .2 Ï sclection and ewsnt yiells.
18.1.3 Measurcmsit of the top quark mass
18.1.4 Top quark par production
18.1.5 Top quark decays and couplings
18.1.6 Elsctroweak single top quikk production
18.1.7 Conclusiors of top quark plysiss studies
18.2 Fourth grocration quarks
18.2 .1 Fourth family φ 甲 quarks
132.2 Fourth family down quaxks
18.2.3 Bound states of fourth tamily quarks.
18.3 Hasy leptons
18.4 Conclusions

Higg Bosors
19.1 Introdustion.

192 Standard Modat Higss boson
192.1 Introdution
$192.2 \mathrm{H} \rightarrow \mathrm{H}$
$192.3 \mathrm{H} \rightarrow \mathrm{Zy}$
$192.4 \mathrm{H} \rightarrow \mathrm{H}$.
$192.5 \mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow 41$
$192.6 \mathrm{H} \rightarrow \mathrm{wW}^{\mathrm{E}} \rightarrow \mathrm{IvNv}$
19.2 .7 Wh with $\mathrm{H} \rightarrow$ Ww* \rightarrow Ntrand W

These large data sets will allow very sensitive studies of the properties of the top quark. The nass of the top quark will be measured with a precision of kess than 2 GeV , dominated entrely by syst ematic errors. The top quark Yukawa coupling can be measured with a preckton of les than 10% for a Higgs mass of 100 GeV . The tit spin correlations predicted in the SM can be observed and used to probe for ancmabus couplings or CP viclation Hexvy resonances decayin of the could be detected with maxses up to 3 TeV for $\sigma \times \mathrm{BR}$ greater than shout 10 ft . Rare decay; oally, the detailed ent of three different mechand veld a wesleh of information inclucling procision messuremente of V, massurement of the W and t p clarisations, and searches for anomalous couplings

18.2 Fourth generation quarks

Data from L.EP and SLC imply the exksence of only three SM farulies with ught neutrinos However, extra generatlons with heavy neutrinos are not exclecded and models which include them have been proposed. The current experimental limits on fourth famuly quarks and leptons trains the mass splitting quarks: $\mathrm{I}_{\mathrm{l}}\left(\mathrm{c}_{1} / 3\right) \mathrm{Am}_{1}{ }^{2}<(49 \mathrm{GeV})^{2},(83 \mathrm{GeV})^{2}$, where q_{L} is the colour factor, and where the firs (sesond) lumit ccrremponds to a Higg mass of about Lo Gev (200 GeY). Considering only fourth family quarks, an analysis gives $\Delta \mathrm{m}=\left|\mathrm{m}\left(d_{\mathrm{d}}\right)-\mathrm{m}\left(u_{\psi}\right)\right|<43 \mathrm{GeV}(72 \mathrm{GeV})$.
To take a specific model as an example, the democratic maxs matrix (DMM) approach, developed as coe posstbulity for solving the problem of the masses and muxings of the fundamental oped as coe possiblity for solving the problem of the maxses and nuxings of the fundamenta partikles is considered. In the DMM approach, the SM is extended to include a fourth genera
tico of fundamental fermions, with masses typically in the range from 300 to 700 GeV [18.55]. In order to avoid vilation of partial wave unitarty, the quark masses should be smaller than about 1 TeV [18.56]. A few efforts have been made to parametrise the CKM matrix to take Into account a possible fourth family $[18-57] \mid[18-58]$. These models predke that the fourth generation quark masses are close to each other, and that two-body decays of fourth family quarks are dominant over threebody decays. Guided by these models, two sets of mass values $\mathrm{m}\left(\mu_{f}\right)=m\left(d_{d}\right)=320 \mathrm{GeV}$ and $\mathrm{m}\left(\tilde{u}_{j}\right)=\mathrm{m}\left(d_{j}\right)=610 \mathrm{GeV}$, together with the CKM values in referene-

A fourth generation of fermions would contribute to the loop-mediated processes in Higss pro duction ($\mathrm{gg} \rightarrow H$) and decay ($\mathrm{H} \rightarrow \mathrm{\gamma}, \mathrm{H} \rightarrow \mathrm{g} 8$) [8861].

This effect would both enhance the Higgs pro duction cross secticn, and modify the branching ratios for Higgs decay. Table 18.18 summarises a few examples of the predicted enhancement, relative to the three-generation SM, a fourth generation would glve in the val. ues of $\sigma \times \mathrm{BR}$ for the channels $H \rightarrow \mathrm{r}$ and $H \rightarrow Z Z$. The enhancement is typically a factorof approximately $7-10$ for the $H \rightarrow Z Z$ (and alen $H \rightarrow W W$) channels, and up to 2 for $H \rightarrow \mathrm{r}$ The enhancements are almost independent of the assumed mass of the fourth fanuly quarks or any other parameters.	Table 18-18 The errancement, compared to the prediciton of the tree perceration $S M$, in Higgs production and decay cue to a fourth generation of femikns mass 320 GeV or 640 GeV .				
	8 M HIgOS Mace (GoV)	Enhanoement $\ln \sigma \times$ 浱			
			$\rightarrow \mathrm{m}$	6× BR	$\rightarrow 2{ }^{\circ}$
		$\begin{aligned} & m_{1}=320 \\ & \mathrm{Gov} \end{aligned}$	$\begin{aligned} & m_{\text {me }}^{\text {oevo }} \end{aligned}$	$\begin{aligned} & m_{0}=320 \\ & \operatorname{sov} \end{aligned}$	$\begin{aligned} & m_{10}=8 \\ & \mathrm{Oov} \end{aligned}$
	120				
	130	1.3	1.35	9.46	20
	150	2.19	222	7.36	
	170			11.4	11.2
	181			8.30	

them directly. Fourth family quarks would be

$$
181
$$

produced in pairs at the L.HC. The expected production cross-section as a function of bewy quark mass was plotted in Figure 18-1, and shows that $\sigma=10 \mathrm{pb}$ for a quark mass of 400 GeV decreasing to $=0.25 \mathrm{pb}$ for a mass of 800 GeV .

8.2.1 Fourth family up quarks

The fourth generation up-type quark (u_{i}) would predominantly decay vau $u_{i} \rightarrow W$. The expect ed event topologies are thus the same as for $t \bar{t}$ production, except for the different mass of the u_{4} quark. The best channel for observing $u \bar{u}_{4}$ produrtion would be the 'stigle lepton plus jes
mode where one W decays leptontcally $(W \rightarrow V)$ and the cther hadronically ($W \rightarrow \bar{n}$ [18.50$)$.

Events of the topology $u_{4} \bar{u}_{4} \rightarrow$ WWB $\rightarrow($ (v) $(1) b 5$ were generated with PYTHIA and simulated with ATL.FAST. Events were selected by requiring $E_{\text {rtan }} \times 20 \mathrm{GeV}$ and the presence of an tsolat with ATLEAST. Events were selected by requiring $E_{\mathrm{T}}^{\text {mix }}>20 \mathrm{GeV}$ and the presence of an isolat
ed electron or muon with $p_{\mathrm{T}}>50 \mathrm{GeV}$ and $|\pi|<2.5$. The lepton tsolation criteria required the ed electron or muon with $p_{\mathrm{T}}>50 \mathrm{GeV}$ and $|\pi|<25$. The lepton tsolation crittria required the 0.4, and that the total transverse energy deposition in cells within a cone $\Delta R<0.2$ around the leption not exceed 10 GeV . Two very hard ($p_{\mathrm{T}}>250 \mathrm{GeV}$) fets were required to be tagged as -jets. An additional pair of jets, not tagged as bjets, was required to satisfy $0 \mathrm{GeV}<\mathrm{m}_{y}<100 \mathrm{GeV}$ in order to be loosely consistent with m_{w}. Accepted W candidates wer hen combfined with the b-tagged jets to search for evidence of $u_{4} \rightarrow W b \rightarrow j b$. The mass resolu $\mathrm{m}\left(u_{j}\right)=640 \mathrm{GeV}$, the corresponding values were 40 GeV and $Q 6 \%$.

The background is dominated by tī production with subsequent decay $\bar{t} \rightarrow($ iv)(i)ibr. This back ground process has the same final state as the signal, as well as a large cross-section. In addition, there are smaller backgrounds from $W+4$ jets, $W W+2$ jets, and $Z Z+2$ jets. The hard klnematic ats are effective at reducing the backgrounds. The W and $W W$ backgrounds are further sup with one Z decaying leptontcally and the other to $b \bar{b}$, is very small after cuts.

It is useful to consider three different bases:

Mass basis $\left\{f^{m}\right\}$ and
Weak basis $\{f \rightsquigarrow\}$.

According to the three family SM, before the spontaneous symmetry breaking quarks are grouped into the following $\mathrm{SU}(2) \times \mathrm{U}(1)$ multiplets:

$$
\binom{u_{L}^{0}}{d_{L}^{0}}, u_{R}^{0}, d_{R}^{0} ; \quad\binom{c_{L}^{0}}{s_{L}^{0}}, c_{R}^{0}, d_{R}^{0} ; \quad\binom{t_{L}^{0}}{b_{L l}^{0}}, t_{R}^{0}, b_{R}^{0} .
$$

In one family case all bases are equal and, for example, d-quark mass is obtained due to Yukawa interaction

where $m_{d}=a_{d} \eta / \sqrt{ } 2, \eta=<\varphi^{\rho}>\cong 247 \mathrm{GeV}$. In the same manner $m_{u}=a_{u} \eta / \sqrt{ } 2$, $m_{e}=a_{e} \eta / \sqrt{ } 2$ and $m_{v e}=a_{v e} \eta / \sqrt{ } 2$ (if neutrino is Dirac particle).

In n family case

$$
L_{Y}^{(d)}=\sum_{i, j=1}^{n} a_{i j}^{d}\left(\bar{u}_{L i}^{0} \bar{d}_{L i}^{0}\right)\binom{\varphi^{+}}{\varphi^{0}} d_{R j}^{0}+h . c .=\sum_{i, j=1}^{n} m_{i j}^{d} \bar{d}_{i}^{0} d_{j}^{0}, m_{i j}^{d}=a_{i j}^{d} \eta N 2
$$

where d_{1}^{0} denotes d^{0}, d_{2}^{0} denotes s^{0} etc.

Flavor Democracy assumptions

Before the spontaneous symmetry breaking all quarks are massless and there are no differences between d^{0}, s^{0} and b^{0}. In other words fermions with the same quantum numbers are indistinguishable. This leads us to the fifst assumption, namely,

$$
a_{i j}^{d} \cong a^{d}, \quad a_{i j}^{u} \cong a^{u}, \quad a_{i j}^{l} \cong a^{l}, \quad a_{i j}^{V} \cong a^{v} .
$$

The first assumption result in $n-1$ massless particles and one massive particle with $m=n \cdot a^{F} \cdot \eta / \sqrt{2}(\mathrm{~F}=\mathrm{u}, \mathrm{d}, \mathrm{l}, \mathrm{v})$ for each type of the SM fermions.

Because there is only one Higgs doublet which gives Dirac masses to all four types of fermions (up quarks, down quarks, charged leptons and neutrinos), it seems natural to make the second assumption, namely
:

For 3SM case this means:

$$
m_{v_{\tau}}=m_{\tau}=m_{b}=m_{t}=3 a \eta / \operatorname{sqrt}(2)
$$

Taking into account the mass values for the third generation

$$
m_{v_{\tau}} \ll m_{\tau}<m_{b} \ll m_{t}
$$

the second assumption leads to the statement that
flavor democracy the fourth SM family should exist.

Above arguments, in terms of the mass matrix, mean

Therefore, the fourth family fermions are almost degenerate, in good agreement with experimental value $\rho=0.9998 \pm 0.0008$

If $a=1$ the predicted mass value is coincide with the upper limit on heavy quark masses, $\mathrm{m}_{\mathrm{Q}} \leq 700 \mathrm{GeV}$, which follows from partial-wave unitarity at high energies
M.S. Chanowitz, M.A. Furlan and I. Hinchliffe, Nucl. Phys. B 153 (1979) 402

If flavor democracy predicts

The masses of the first three family fermions, as well as an observable interfamily mixings, are generated due to the small deviations from the full flavor democracy
A. Datta and S. Rayachaudhiri, Phys. Rev. D 49 (1994) 4762.
S. Atag et al., Phys. Rev. D 54 (1996) 5745.
A.K. Ciftci, R. Ciftci and S. Sultansoy, Phys. Rev. D 72 (2005) 053006.

Last parameterization, which gives correct values for fundamental fermion masses, at the same time, predicts quark and lepton CKM matrices in good agreement with experimental data.

Arguments against the Fifth SM Family

The first argument disfavoring the fifth SM family is the large value of $m_{t} \approx 175 \mathrm{GeV}$. Indeed, partial-wave unitarity leads to $m_{\mathrm{Q}} \leq 700 \mathrm{GeV} \approx 4 m_{t}$ and in general we expect that $m_{t} \ll m_{4} \ll m_{5}$.

Second argument: neutrino counting at LEP results in fact that there are only three "light" $\left(2 m_{v}<m_{z}\right)$ nonsterile neutrinos, whereas in the case of five SM families four "light" neutrinos are expected.

Concerning the BSM Physics, Flavor Democracy:

- Favors the RS-LSP scenario
- Allows relatively "light" isosinglet quarks (E6 predicted)
"Flavor Democracy in Particle Physics" e-Print: hep-ph/0610279; AIP Conf. Proc. 899, 49-52 (2007) and references therein

Masses and Mixings (breaking of democracy)

A.K. Ciftci, R. Ciftci and S. Sultansoy, Phys. Rev. D 72 (2005) 053006

$$
M_{(M)}=a \eta\left[\begin{array}{cccc}
1 & 1+\gamma & 1+\beta & 1-\beta \\
1+\gamma & 1+2 \gamma & 1+\beta & 1-\beta \\
1+\beta & 1+\beta & 1+\alpha & 1-\alpha \\
1-\beta & 1-\beta & 1-\alpha & 1+\alpha+2 \beta
\end{array}\right] .
$$

Eighenvalues of the matrix give us masses of corresponding fermions which are used to fix the values of parameters α, β and γ.

The quark CKM matrix is given as $O_{\mathrm{CKM}}=O_{u} O_{d}^{T}$, where O_{u} and O_{d} are (real) rotations which diagonalize up- and down-quark mass matrices. (We assume that 3 phase parameters in the quarks' CKM matrix are small enough to be neglected.) With the parameters given in Table III, one obtains
$O_{\mathrm{CKM}}=\left[\begin{array}{cccc}0.9747 & -0.2235 & -0.0028 & -0.0001 \\ 0.2232 & -0.9738 & -0.0439 & -0.0006 \\ -0.0125 & 0.0422 & -0.9990 & -0.0008 \\ -0.0002 & 0.0005 & 0.0008 & -1.0000\end{array}\right]$

Similarly for leptons

$O_{\mathrm{CKM}}^{l}=\left[\begin{array}{cccc}0.82 & 0.29 & 0.49 & -6.43 \times 10^{-6} \\ -0.55 & 0.60 & 0.58 & 1.28 \times 10^{-4} \\ 0.12 & 0.74 & -0.66 & 8.14 \times 10^{-4} \\ -2.34 \times 10^{-5} & 6.81 \times 10^{-4} & 4.64 \times 10^{-4} & 1.00\end{array}\right]$.

These matrices should be compared with the experimental data

$$
\left[\begin{array}{lll}
0.70-0.87 & 0.20-0.61 & 0.21-0.63 \\
0.50-0.69 & 0.34-0.73 & 0.36-0.74 \\
0.00-0.16 & 0.60-0.80 & 0.58-0.80
\end{array}\right]
$$

2. The Fourth SM Family at hadron colliders

2.1. The fourth SM family manifestations at the upgraded Tevatron:
a) Significant enhancement (~ 8 times) of the Higgs boson production cross section via gluon fusion
b) Pair production of the fourth family quarks (if $m_{d 4}$ and/or $m_{u 4}<350 \mathrm{GeV}$)
c) Single resonant production of fourth family quarks via the process $\mathrm{qg} \rightarrow \mathrm{q}_{4}$ (if anomalous coupling has sufficient strength)
d) Pair production of the fourth family neutrinos (via Z and/or H)

Tevatron 2004

DØ presentations, for example,
A. Kharchilava, hep-ex/0407010
W.-M. Yao, hep-ex/0411053
V. Buscher, hep-ex/0411063

Tevatron 2005-2006

FIG. 2 (color online). Expected and observed upper limits on the cross section times branching ratio $\sigma \times \mathrm{BR}\left(H \rightarrow W W^{(*)}\right)$ at the 95% C.L. together with expectations from standard model Higgs boson production and an alternative model. The LEP limit on the standard model Higgs boson production is taken from [1] and the 4th generation model prediction is described in [6].
E. Arik et al., Acta Phys. Pol. B 37 (2006) 2839

	$150 \mathrm{GeV}<\mathrm{m}_{\mathrm{H}}<180 \mathrm{GeV}$	$140 \mathrm{GeV}<\mathrm{m}_{\mathrm{H}}<200 \mathrm{GeV}$
SM-5	$135 \mathrm{GeV}<\mathrm{m}_{\mathrm{H}}$	$125 \mathrm{GeV}<\mathrm{m}_{\mathrm{H}}$
	---	$160 \mathrm{GeV}<\mathrm{m}_{\mathrm{H}}<195 \mathrm{GeV}$
SM-5*	$155 \mathrm{GeV}<\mathrm{m}_{\mathrm{H}}$	150 GeV < m_{H}
SM-6*	$150 \mathrm{GeV}<\mathrm{m}_{\mathrm{H}}$	$145 \mathrm{GeV}<\mathrm{m}_{\mathrm{H}}$

Observability of the Higgs Boson in the Presence of

The excluded region of $\sigma \times \mathrm{BR}\left(H \rightarrow W W^{(*)}\right)$ at 95% C.L. t

Wrong approach (all channels)

Correct approach (WW channel)

FIG. 4: Expected and observed 95% CL croas section ratio of the combined Run IIa and Run IIb analysea for $H \rightarrow W W$.

 $\omega_{1} / W+W-/ T$ calyses over the $100 \leq \mathrm{m}_{\mathrm{F}} \leq 200 \mathrm{CeV} / c^{3}$ mase range

In 4SM case $140 \mathrm{GeV}<\mathrm{m}_{\mathrm{H}}<? ? \mathrm{GeV}$ is exluded at $95 \% \mathrm{CL}$

Another opportunity to observe the fourth SM family quarks at the Tevatron is their anomalous production via qg-fusion if anomalous coupling has sufficient strength
E. Arik. O. Cakir and S. Sultansoy, Phys Rev D 67 (2003) 035002

Eur Phys Lett 62 (2003) 332
Eur Phys J C 39 (2005) 499

2.2. The Fourth SM Family at the LHC

- Higgs - "golden mode" (S.A. Çetin, today)
- Higgs - "silver mode" (T. Çuhadar Donszelmann, today)
- Pair production - fourth family quarks
- Single production - fourth family quarks
(O. Çakır, tomorrow)
- Pair production - fourth family neutrinos (via Z and H)

Existence of the fourth SM family can give opportunity for Tevatron to observe the intermediate mass Higgs boson before the LHC.

However, LHC will cover whole region via golden mode during the first year of operation. E. Arik et al., Phys. Rev. D 66 (2002) 033003

E. Arik et al., Phys. Rev. D 58 (1998) 117701

$$
p p \rightarrow u_{4} \bar{u}_{4} \rightarrow b \bar{b} W^{+} W^{-}
$$

$$
u_{4} \bar{u}_{4} \rightarrow l^{ \pm}+2 j+2 b_{j e t}+\not p_{t}
$$

$M_{u_{4}}$	320 GeV	640 GeV
$t \bar{t}$	19320	8930
$W+4 j$	760	327
$W W+2 j$	113	48
$Z Z+2 j$	17	6
Background	20210	9311
Signal	10600	1591
$\frac{S}{\sqrt{B}}$	74.5	16.6

3. The Fourth SM Family at the CLIC

$$
\begin{aligned}
& m_{u 4}>310 \mathrm{GeV} \text { at } 95 \% \mathrm{CL} \\
& m_{\mathrm{d} 4}>m_{u 4} \\
& m_{14} \approx m_{\mathrm{d} 4} \\
& m_{\mathrm{v} 4}(\mathrm{D}) \approx m_{14} \\
& \sqrt{s}>600 \mathrm{GeV} \text { is needed }
\end{aligned}
$$

Yellow Report cern-2004-005, hep-ph/0412251

Table 6.11 : Cross sections and event rambers per year for pair prodiction of the fourth-SM-family ferrions with mass 320 GeV at CLIC $\left(\sqrt{s_{e s}}=1 \mathrm{TeV}, L_{e c}=2.7 \times 10^{34} \mathrm{~cm}^{-2} 5^{-1}\right.$ and $\left.L_{\gamma \gamma}=10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$

		$u_{4} \overline{\bar{u}_{4}}$	$d_{4} \overline{d_{4}}$	$l_{4} I_{4}$	$\nu_{4} \overline{/ V}$
$e^{+} e^{-}$option	σ (fb)	130	60	86	15
	$\mathrm{New} /$ /year	35000	16000	23000	4100
$\gamma \gamma$ option	σ (fb)	34	2	58	-
	$\mathrm{N}_{\mathrm{ev}} /$ year	3400	200	5700	-

Table 6.12: Cross sections and event nambers per year for pair production of the fourth-SM-family fenrions with mass 640 GeV at CLIC $\left(\sqrt{s_{e f}}=3 \mathrm{TeV}, L_{e x}=1 \times 10^{35} \mathrm{~cm}^{-2} 5^{-1}\right.$ and $\left.L_{\gamma \eta}=3 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$

	$u_{4} \overline{u_{4}}$	$d_{4} \overline{d_{4}}$	$l_{4} \overline{l_{4}}$	$\nu_{4} \overline{\nu_{4}}$	
$e^{+} e^{-}$option	$\sigma(\mathrm{fb})$ $\mathrm{Nav}^{2} /$ year	16000	8000	10000	2000
$\gamma \gamma$ option	$\sigma(\mathrm{fb})$ $\mathrm{N}_{\mathrm{ov}} /$ year	2700	600	14000	-

Table 6.14: The production event mumbers per year for the fourth-SM-fanily ψ_{4} quarionia at a CLIC 1 TeV option with $m_{\psi_{1}} \simeq 1 \mathrm{TeV}$

	$\left(u_{4} \overline{u_{4}}\right)$	$\left(d_{4} \overline{d_{4}}\right)$
$e^{+} e^{-} \rightarrow \psi_{4}$	26600	10400
$e^{+} e^{-} \rightarrow \psi_{4} \rightarrow \gamma H$	510	50
$e^{+} e^{-} \rightarrow \psi_{4} \rightarrow Z H$	60	80

Table 6.13: Decay widths for main decay modes of ψ_{4} for $m_{H}=150 \mathrm{GeV}$ with $m_{\psi_{L}} \simeq 1 \mathrm{TeV}$

	$\left(u_{4} \overline{u_{4}}\right)$	$\left(d_{4} \overline{d_{4}}\right)$
$\Gamma\left(\psi_{4} \rightarrow \ell^{+} \ell^{-}\right), 10^{-9} \mathrm{MeV}$	18.9	7.3
$\Gamma\left(\psi_{4} \rightarrow u \bar{u}\right), 10^{-2} \mathrm{MeV}$	3.2	1.9
$\Gamma\left(\psi_{4} \rightarrow d \bar{d}\right), 10^{-2} \mathrm{MeV}$	1.4	1.7
$\Gamma\left(\psi_{4} \rightarrow Z \gamma\right), 10^{-1} \mathrm{MeV}$	15	3.7
$\Gamma\left(\psi_{4} \rightarrow Z Z\right), 10^{-1} \mathrm{MeV}$	1.7	5.4
$\Gamma\left(\psi_{4} \rightarrow Z H\right), 10^{-1} \mathrm{MeV}$	1.7	5.5
$\Gamma\left(\psi_{4} \rightarrow \gamma H\right), 10^{-1} \mathrm{MeV}$	14.4	3.6
$\Gamma\left(\psi_{4} \rightarrow W^{+} W^{-}\right), \mathrm{MeV}$	70.8	71.2

- Detailed study of pair production of the 4-th family leptons
- Impact of beam dynamics on the 4-th family quarkonia
- Anomalous production and decays of the 4-th family quarks and leptons
- $\mathrm{u}_{4} \mathrm{U}_{4} \mathrm{H}$ and $\mathrm{d}_{4} \mathrm{~d}_{4} \mathrm{H}$ final states
- Identification: d_{4} vs isosinglet $\mathrm{D}\left(\mathrm{E}_{6}\right)$
- Identification: u_{4} vs isosinglet T (Little Higgs)

