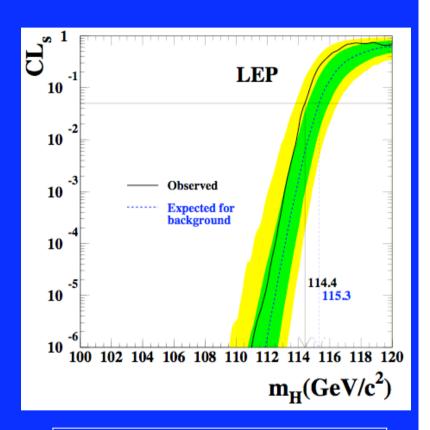
Fourth Family Neutrinos and Higgs Boson

T.Cuhadar Donszelman (University of Sheffield)

M.Karagoz Unel (University of Oxford)


V. E. Ozcan (University College London)

S. Sultansoy (TOBB University, Ankara & Institute of Physics, Baku)
G. Unel (CERN/UC Irvine)

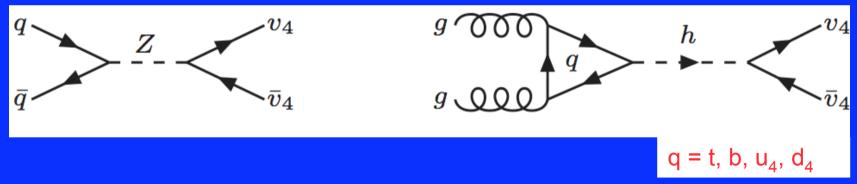
Beyond the 3SM generation at the LHC era Workshop, CERN September 4-5, 2008

Outline

- Introduction
- Cross section, branching fraction of h and v₄
- Signal and Background Events
- Generators & Production chain
- Event selection efficiency
- Results Reconstructed v₄,
 h and significances
- Conclusion

 The lower limit on Higgs mass by LEP experiments (ALEPH, DELPHI, L3, OPAL)

m_H > 114.4 GeV at 95% CL

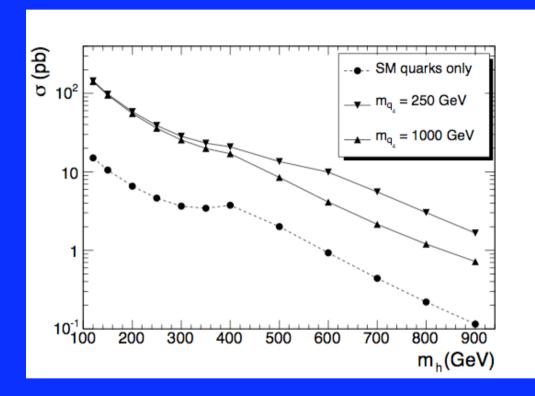

Introduction

- Can the 4th family members be observed in LHC/ATLAS?
- We have investigated the existence of v_4 and the impact on the SM Higgs boson through ("silver mode") :

$$pp \rightarrow h \rightarrow v_4 \, \overline{v}_4$$
 (suggested by S. Sultansoy & G. Unel, Tr.J.Phys. 31 2007)

v₄ can still be produced via (in case Higgs does not exist)

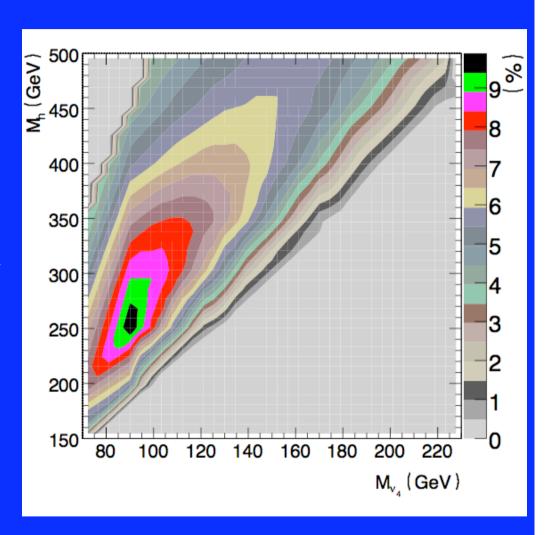
$$pp \rightarrow Z \rightarrow v_4 \overline{v}_4$$

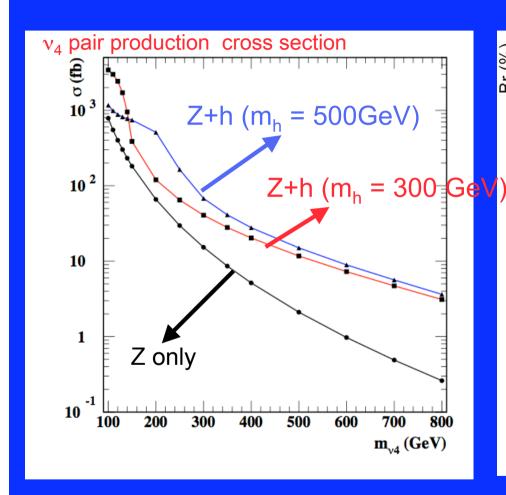


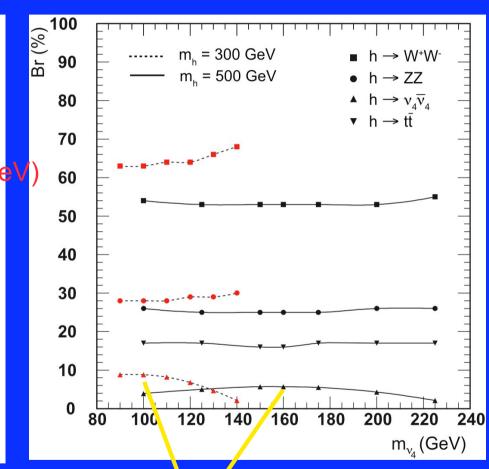
- Majorana or Dirac nature of v_4 is studied
 - Particle =? Anti-Particle
- Preliminary results available in ArXiv:0806.4003v3 [hep-ph],
 Submitted to JHEP.

Higgs Production Cross Section

- The dominating Higgs production mechanism at the LHC → Gluon Fusion process
- Higgs cross section due to fourth family quarks computed with HIGLU
- Cross section depends on the fourth quark mass (m_{α4})
- For the analysis, cross section with


 $m_{q4} = m_{u4} = m_{d4} = 500 \text{ GeV}$ (same mass favored by DMM approach)


Cross section as a function of higgs mass for m_{q4} = 250, 1000 GeV compared to SM


Higgs Decay Branching Fraction

- Branching fraction of Higgs decaying into heavy neutrino pairs computed via CompHEP
- Highest branching fraction BR(h $\rightarrow v_4 \, \overline{v}_4$) ~10 % at m_{v4} = 90 GeV & m_h = 250 GeV
- Two points chosen for the test $m_h = 300$, $\Gamma = 9$ GeV $m_h = 500$, $\Gamma = 67$ GeV

ν₄ Cross Section & Branching fraction

Two v_4 mass values chosen as benchmark points 6

Signal Events

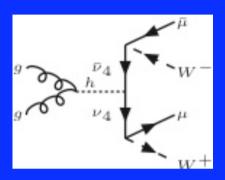
- BR ($v_4 \rightarrow \mu W$) ~ 68% (PRD **72 (2005) 053006**)
- Considering only the hadronic decay of W
 Final State : 2µ + 4j

Summary of Benchmark points:

	$\sigma_{pp \to Z \to \nu_4 \bar{\nu}_4}$ (fb)	mh (GeV)	$\sigma_{gg \to h}$ (pb)	m_{V_4} (GeV)	$BR(h \rightarrow v_4 \bar{v}_4)$	$\sigma_{pp \to \nu_4 \bar{\nu}_4 \to WW\mu\mu}$ (fb)
SI	782	N/A	N/A	100	N/A	362
S2	782	300	30	100	0.088	1583
S3	144	500	10	160	0.055	321

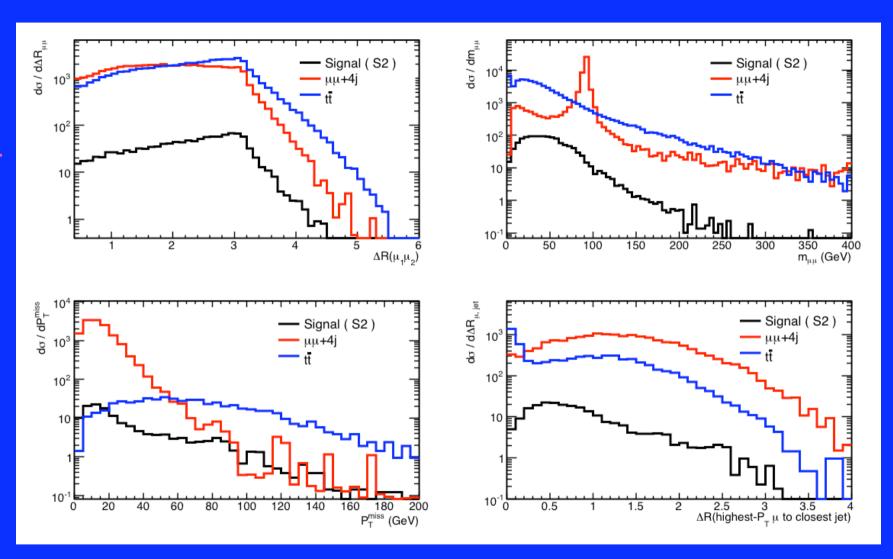
Background events

- Di-boson + di-muon
 - 2V+2μ , V = W / Z produced with MadGraph
 - Total cross section is negligible
 - less than 5 fb


Process	cross section (fb)			
$W^+W^-\mu^+\mu^-$	2.56 ± 0.02			
$ZZ\mu^+\mu^-$	0.70 ± 0.06			
$W^+Z\mu^+\mu^-$	0.97 ± 0.01			
$W^-Z\mu^+\mu^-$	0.48 ± 0.06			
Direct Total	4.71 ±0.09			

- Muon $p_T > 15 \text{ GeV}$; $|n_{\mu}| < 2.5 \text{ and } m_{QCD} = m_Z$
- Di-muon + 4j (Z/γ + 4j)
 - Produced with MadGraph (compared with AlpGen)
 - Not negligible contribution, 57 pb
 - Muon and jet $p_T > 15$ GeV; $|n_{\mu}| < 2.5$, $|n_j| < 5$; $\delta R_{jj} > 0.4$ and $m_{QCD} = m_Z$
- tt background
 - Not negligible 755 pb

CTEQ6L1


Generators & Production chain

- Event Generation
 - CompHEP + MadGraph
 - Small sample with AlpGen for comparison purpose
- Pythia
 - Parton Showering, Hadronization, multiple interactions etc.
- PGS
 - For detector Simulation
 - ATLAS parameterization
 - Muon mischarge rate is parameterized as a function of $(p_T)_\mu$ and added manually to PGS
- ROOT based analysis

"ggh"effective coupling implemented In CompHEP

Kinematic Distributions

$$\Delta R = \sqrt{\left(\Delta \eta\right)^2 + \left(\Delta \phi\right)^2}$$

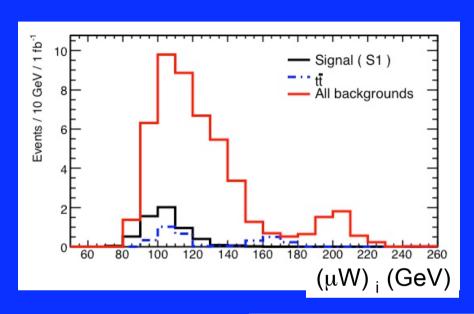
Event Selection Efficiencies

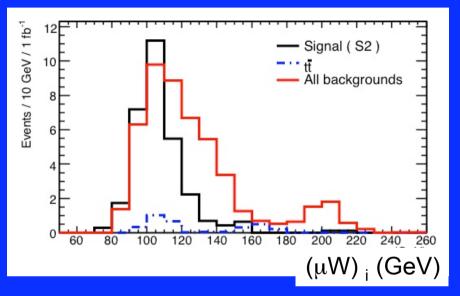
The cuts applied to select $2\mu+4j$ final states :

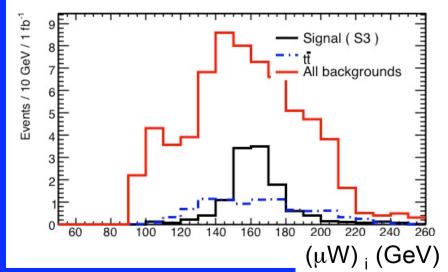
Selection criterion	S1	S2	S3	2μ4j	tt
At least 2μ	63.6	77.9	84.1	93.3	8.1
p _T (μ) > 15 GeV	50.7	55.1	95.1	88.8	29.5
At least 4j	73.6	82.3	82.6	86.0	88.7
p _T (j) > 15 GeV	53.3	65.6	72.2	70.4	76.0
M _{jj} - M _W < 20 GeV	63.1	60.5	60.3	45.9	52.8
$\Delta R_{\mu j} > 0.4$	64.5	65.9	77.4	83.0	17.4
No j _b	93.6	92.0	91.5	93.6	53.4
Missing E_T < 30 GeV	74.4	64.9	68.7	79.4	15.4
Common ε _{reco}	3.7	5.7	13.4	24.2	1.2x10 ⁻²

- Choose two high p_T muons and four jets with enough p_T
- Make best two W's out of 4 jets
- Reject muons coming from b via isolation cut

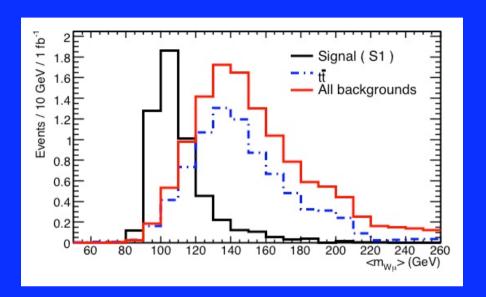
v₄: Dirac or Majorana?

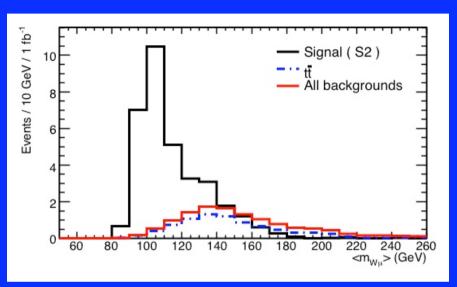

- Further selection criterion applied to selected $2\mu4j$ events to study the nature of v_4
- Dirac type $v_4 \overline{v}_4$ decay to: 100% opposite-sign leptons and bosons

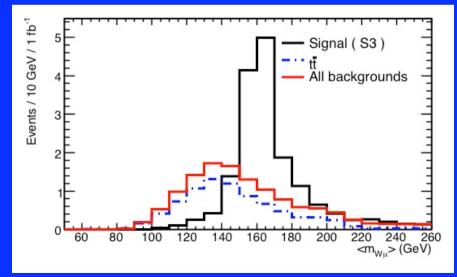

Selection criterion	S1	S2	2μ4j	tt	S3	2μ4j	tŧī
Sign(μ_1)xSign(μ_2) = -1	97.3	96.5	99.9	84.5	99.2	99.9	84.5
$ m_{\mu + \mu -} - m_Z > 25 \text{ GeV}$	79.1	74.1	10.0	67.7	77.6	10.0	67.7
$\Delta R_{\mu\mu} > 2.0$	72.9	65.6	34.3	59.5	74.7	34.3	59.5
$ \Delta m_{v4} \text{ (reco)} - \Delta m_{v4} \text{(true)} < 20 \text{ GeV}$	67.9	60.4	5.5	6.1	39.6	6.06	13.6
Dirac ε _{total}	1.4	1.6	4.5x10 ⁻²	2.5x10 ⁻⁴	3.1	5.0x10 ⁻²	5.7x10 ⁻⁴

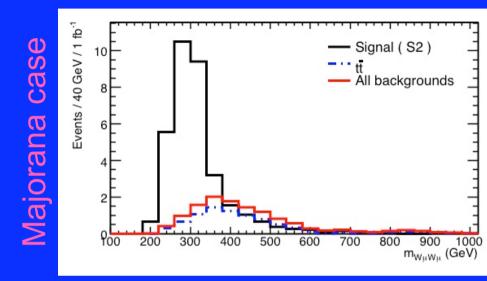

• Majorana type $v_4\overline{v}_4$ decay to : 50% same-sign leptons and bosons ; 50% opposite sign leptons and bosons

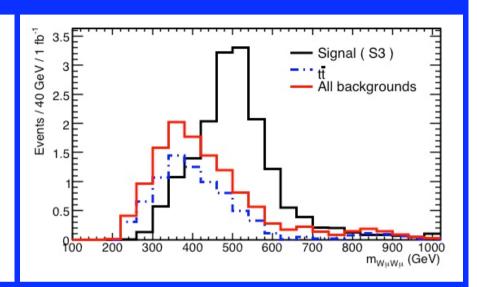
Selection criterion	S1	S2	S3	2μ4j	tŧī
Sign(μ_1)xSign(μ_2) = 1	46.6	45.5	51.2	6.8x10 ⁻²	15.5
$\Delta m_{v4} / \overline{\Delta m_{v4}} < 0.25$	88.2	85.2	74.3	52.0	58.8
Majorana ε _{total}	1.5	2.1	5.3	8.6x10 ⁻³	1.1x10 ⁻³

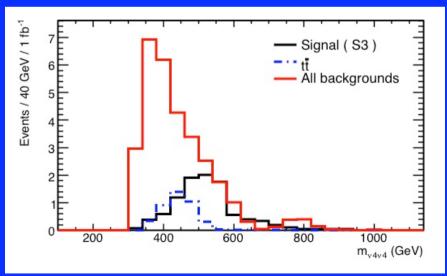

Results of Dirac v_4



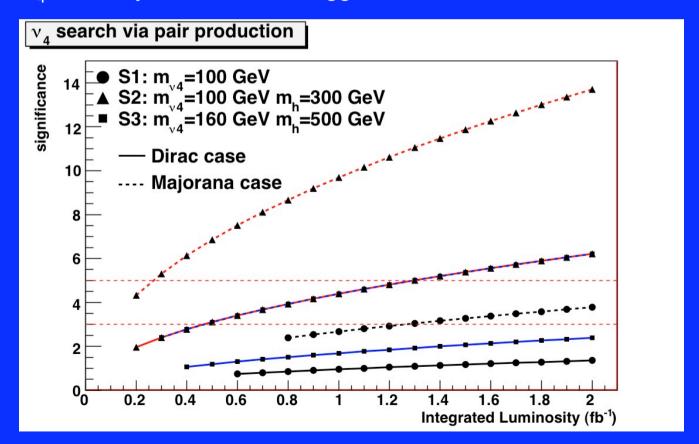



Results of Majorana v₄





Reconstructed Higgs Mass

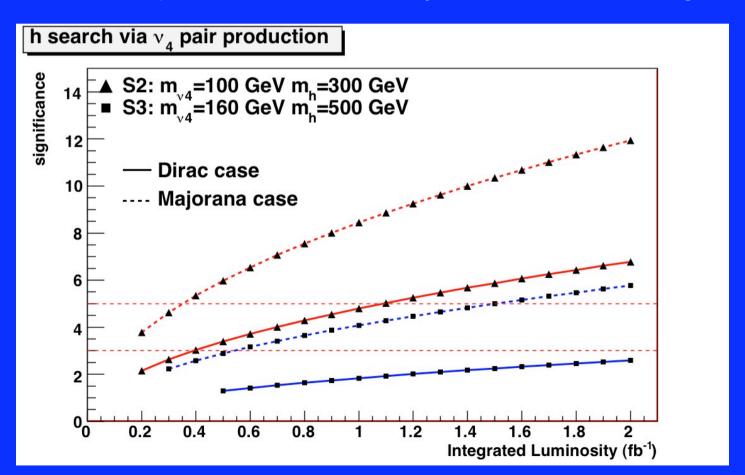


Dirac case

Significance

$$\sqrt{2 \times \left[(s+b) \ln \left(1 + \frac{s}{b} \right) - s \right]}$$

- For each scenarios, significance computed from the 4 bins around signal peak
- Majorana v_4 will be accessible for three benchmark points (i.e. with or without Higgs boson) around 1-2 fb⁻¹
- Dirac v_4 can only be seen with Higgs



Significance (cont'd)

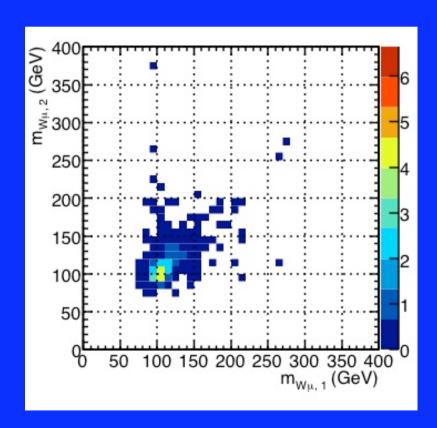
Majorana case: $m_h = 300 \text{ GeV}$, $5\sigma \text{ with } 0.3 \text{ fb}^{-1} \text{ can be achieved}$

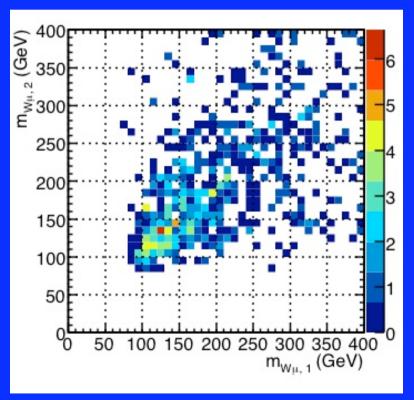
 $m_h = 500 \text{ GeV}$, $3\sigma \text{ with } 1.5 \text{ fb}^{-1} \text{ can be achieved}$

Dirac case: requires ~2x more luminosity to achieve the same significance

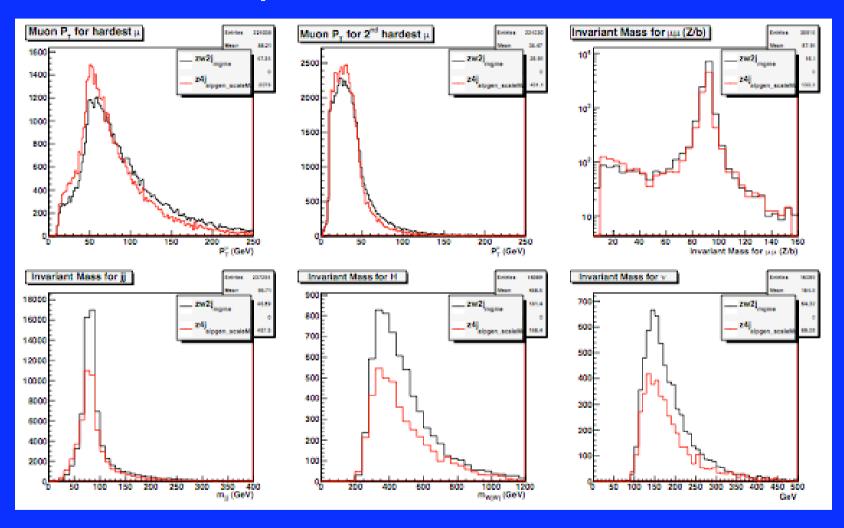
Summary and Outlook

- We have made a feasibility study to determine whether
 SM higgs boson can be detected through its decay into v₄-pair in ATLAS and/or
 - v_4 can be discovered
- Two masses of higgs boson are considered
- With 1-2 fb⁻¹, both v_4 and Higgs boson can be discovered at the same time
 - Majorana case is promising


The analysis can be improved by:


- Cut optimization
 - Analysis based on the cut and count analysis
 - More statistics of background sample needed

Backup Slides


Dirac case: Background rejection

- For S2 and Dirac case :
 - Applied 2D selection : masses of each ν₄

Comparison of Generators

(Red line) : AlpGen : $Z/\gamma + 4j$

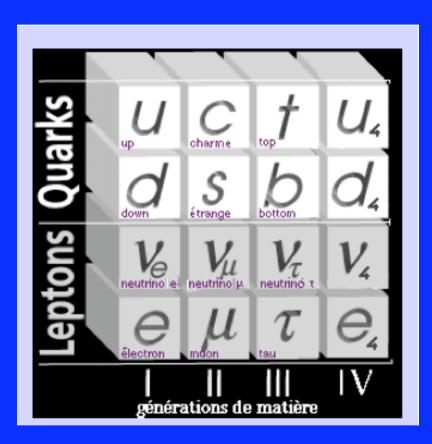
(Black line): MadGraph: Z/γ + W+2j (W→jj) (scaled to AlpGen)

Th. Models

Motivation

- In Standard Model, 3rd generation is completed with the discovery of top quark at FNAL
- Is there any other generation (4th, 5th etc)?
- Recent EW data does not exclude the existence of the 4th generation

V.A. Novikov, L.B. Okun, A. N, Rozanov, M.I. Vysotsky, PLB 529 (2002)


G.D. Kribs, T.Plehn, M.Spannowsky, T.M.P. Tait, PRD 76 (2007)

charge - spin unification

G. Bregar, M. Breskvar, D. Lukman, N.S. Mankoc Borstnik arXiv:0708.2846 (hep-ph)

 DMM (Democratic Mass Matrix) approach

Review: S. Sultansoy hep-ph/0610279

