

Search for long-lived b' at Tevatron

Regina Demina

University of Rochester

For CDF and D0 collaborations

Beyond the 3rd generation workshop *CERN*

4-5 September 2008

Outline

- Motivation and strategies
- Vertex reconstruction
- CDF result
- D0 result
- Conclusions

THE UNIVERSITY OF ROCHISTER

Long-lived Z bosons

$$b\bar{b}' \rightarrow bZ\bar{b}Z$$

$b' \rightarrow bZ$

- ➢ If 4th generation b' quark is lighter than top quark it most likely will decay to b quark and Z boson.
- Since the decay goes through a loop diagram it could be significantly suppressed and thus b' would be longlived.
- Strategy: search for long-lived parents of Z bosons.
- Both experiments identified at least one Z boson through its decays to leptons
 - CDF: Z→μμ
 - ▶ D0: Z→ee
- CDF used the power of its silicon tracker to reconstruct the decay lifetime : sensitive to ctau 0.1 cm – 10 cm
- ▶ D0 took advantage of highly segmented EM calorimeter and preshower to reconstruct "vertex" of two EM objects: sensitive to ctau 1 cm – 100 cm

Precision of silicon tracker (CDF) and EM pointing resolution (D0) – key detector features in the two searches

Vertex reconstruction in CDF

- Select $Z \rightarrow \mu\mu$ (81< $M\mu\mu$ <101 GeV)
 - Muon tracks are reconstructed in the drift chamber and have at least 3 associated hits in the silicon system

Lxy>0.1 cm Nev=3 Nbg=0.72+-0.27

p_{TZ}>30 GeV Lxy>0.03 cm Nev=2 Nbg=1.1+-0.8

Long lived Z search in CDF

- Efficiency is a low for small lifetime, because of the cut on Lxy,
- It also drops for high life time because of the number of silicon hits requirement
- The production cross section does not depend on b' lifetime
- Efficiency is fairly independent on b' mass, but the cross section is dropping for high b' mass

D0 strategy

- D0 used fine segmentation of its EM calorimeter and preshower to reconstruct displaced electrons from Z decay.
- Tracking efficiency can be very low for displaced electrons, most of them are reconstructed as photons.
- In fact the analysis require that there is NO matching track to EM cluster – efficient to signal with lifetime > 1cm and suppresses most of SM background

4 layers in EM: 2,2,7, $10 X_0$ Segmentation in $\eta x \phi$: 0.1x0.1 in all layers but layer3, where it is 0.05x0.05

Position reconstruction in preshower

Vertex reconstruction in D0

Electrons reconstructed using 5 points (preshower +4 EM) approximated by straight line Impact parameter:

Require that the DCA>2cm

Two lines are intersected to reconstruct the decay vertex. Resolution depends on the discriminant of the 2 equation system

Require that D>4000 cm²

Resolution better than 10 cm

Background estimation

- Assume that the background comes primarily from misreconstructed prompt electrons and photons and thus is symmetric around zero in the decay length
- This assumption is cross checked on Z→ee sample with reconstructed tracks

Mee>75 GeV

Number of observed events 49 Expected background 45+-6.7

Results of D0 search

- Efficiency is low for small lifetime, because of the "notrack" requirement and cut on DCA>2 cm
- Efficiency is dropping again for lifetimes longer than 1m, because b' is decaying outside of EM calorimeter
- Production cross section does not depend on ctau, but is decreasing with b' mass

Results

•DØ and CDF used complimentary strategies and thus are sensitive to different ranges of b' lifetime

