4TH FAMILY QUARKS AT ATLAS

V. Erkcan Ozcan
University College London

Beyond the 3SM generation at LHC era WS, CERN, Sept. 04, 2008

OUTLINE / MOTIVATION

- LHC scheduled to have first protons on Sept. 10, 2008.
- CM energy 7x larger than Tevatron, low x, gluon pdfs significant => pair production of heavy quarks...

Recent exciting results from CDF => the first ~100pb⁻¹ of data

will be very interesting.

u₄/d₄ discovery potential at ATLAS:

- ATLAS TDR: q₄ mixing with t/b
- Recent results: q₄ mixing with u/d/s/c
- Not in this talk other heavy quark searches: isosinglets, FCNCs, ...

Tracking	η <2.5
EM Cal.	η <3.2
Had. Cal.	η <~4.9

	Start-up of LHC	Ultimate goal
Electromagnetic energy uniformity	1–2%	0.5%
Electron energy scale	~2%	0.02%
Hadronic energy uniformity	2–3%	< 1%
Jet energy scale	< 10%	1%
Inner-detector alignment	50–100 μm	$< 10 \mu\mathrm{m}$
Muon-spectrometer alignment	< 200 μm	30 μm
Muon momentum scale	~1%	0.02%

4TH GEN. QUARKS IN ATLAS TOR

- Pair production of u_4s and d_4s and possibly a heavy quarkonium state η_4 was studied.
- Mixing assumed to be dominantly with 3rd generation
- Democratic mass matrix (DMM) approach taken; thus assuming $|m_{u4}-m_{d4}| \sim \text{few GeV} < m_W$.
 - But results obtained for "generic" heavy quarks that would decay as $u_4\rightarrow Wb$ and $d_4\rightarrow Wt$.
 - Two mass values: 320 GeV, 640 GeV

TDR ANALYSES

- u₄u₄ and d₄d₄ analyses quite similar, though one involves the intermediate step of recontructing tops.
 - Primary jets (direct daughters of u₄) at high P_T
 - One of Ws in leptonic channel (with isolated μ or e), all others in hadronic channel
 - b-tagging/b-veto as expected in the final state
 - From each event only one q₄ finally reconstructed, the fact that one expects two objects of same mass is not exploited.
 - Main background from tt pair production.

TDR CONCLUSIONS

- With O(few fb⁻¹) enough for discovery.
- Next step? "Full" analysis, "recent" software...

A LOOK AT 4X4 CKM

• Take the measurements of the quark mixings from PDG and apply unitarity constraints for 4x4 CKM:

$$CKM_{4\times4} \ = \left[\begin{array}{cccc} 0.97377 \pm 0.00027 & 0.2257 \pm 0.0021 & 0.00431 \pm 0.00030 & < 0.044 \\ 0.230 \pm 0.011 & 0.957 \pm 0.095 & 0.0416 \pm 0.0006 & < 0.46 \\ 0.0074 \pm 0.0008 & 0.0406 \pm 0.0027 & > 0.78 & < 0.47 \\ < 0.063 & < 0.46 & < 0.47 & > 0.57 \end{array} \right]$$

• Assume:
$$|V_{d_4u}|^2 + |V_{d_4c}|^2 >> |V_{d_4t}|^2$$

 $|V_{u_4d}|^2 + |V_{u_4s}|^2 >> |V_{u_4b}|^2$

- The final state would be: $pp \rightarrow q_4q_4 \rightarrow WjWj$, j=light jet
 - Look at semileptonic channel: (lv)j(jj)j

EVENT GENERATION

• Signal events with CompHep 4.4.3. 12k signal events each for two choices of mass.

m _{q4} (GeV)	500	750
Γ _{q4} (GeV)	8.2×10 ⁻³	2.8×10 ⁻²
σ _{pp+d4d4} (pb)	2.63	0.25

- Background events with MadGraph 3.95. A total of 280+k events at various QCD scales and jet P_T cuts.
- PDF=CTEQ6L1. Pythia 6.23 for parton showering, hadronization, etc.
- ATLFast fast simulation for detector effects.

BACKGROUNDS

- Initially considered WbWb (mainly tt) and (W/Z)Wjj.
- However WbWbj (ttj) has similar xsec to WbWb and satisfies selection criteria with higher efficiency.
 - WbWb is the dominant background.
- tt2j xsec ~4 times smaller than ttj in the relevant jet P_T range. Neglected.
- No matching was done, WbWb and WbWbj simply added conservatively.

EVENT SELECTION

Selection Criterion	ε _{sig} .m=500	ε _{sig} .m=750	Ebkg ^{ttj}
isolated e/μ, P _T >15 GeV	32	32	29
4+ jets, P _T >20 GeV	86	84	84
4 hardest jets: b-tagging veto	92	90	33
possible neutrino solution	75	71	76
m _{jj} W<200 GeV	50	44	75
2 hardest jets: P _T >100 GeV	94	98	35
$ \Delta m_{Wj}^{q4} < 100 \text{ GeV}$	56	49	50
Etotal	5.0	3.6	0.8

KINEMATIC VARIABLES

- Primary jets at high P_T, very loose cuts.
- If backgrounds are found to be more significant in data, P_T^{miss} & P_T^{lepton} cuts.
- Ws can be reconstructed from single jet (will recover the long tail in m_{jj} distribution). => Recently shown to have excellent potential at ATLAS for P_T^W >~250 GeV, + can use jet substructure.

RESULTS

- From each event two q₄ candidates.
- Dominant background from WbWbj, other backgrounds an order of magnitude lower.

FIT - WHY?

- Obtain a blind method to identify the signal above the background.
 - Blind = With essentially zero human input. Define one procedure to apply and irrespective of the mass of the q₄ candidate, the fit tells you the result. Fit should be robust, ie. no tuning of starting parameters for different q₄ masses.
- Backgrounds are extracted from data, ie. no dependence on background MC systematics. Also robustness against backgrounds not considered.

FIT - HOW?

- Breit-Wigner for the signal component.
- Crystal Ball for the sum of backgrounds:

FIT RESULTS

- Extract signal and background by integrating the fit within ±2Γ of signal BW.
 - Divide by two to get number of events.
 - Fit in very good agreement with real inputs.
- Significance computed as s/sqrt(s+b).
 - Pseudo-MC to check whether reported significances.

	500 GeV	750 GeV
Luminosity	1 fb-1	10 fb ⁻¹
Signal	192	134
Background	224	226
Significance	9.2	7.1

DISCOVERY RANGE

• Reach plot obtained by: integrating BG fit function, extrapolating for signal efficiency and calculating the x-sec as function of mass.

CONCLUSION

- Recently many similar analyses (ex: search for isosinglet quarks in E6) went through the fullsimulation studies and ATLFast results were found to be not too optimistic.
 - Expect the same for 4th-family quarks. Also note that not all ideas exploited yet.
- ATLAS has clear potential for 5σ discovery even with the first ~100pb-1 of data (for m_{q4} ~ 400-500 GeV).

BACK-UP SLIDES

HADRONIC VBs: 1 OR 2 JETS

- At high enough P_T, hadronic VB starts to create a single jet.
- So start by looking at each event for jets with mass close to W/Z?

Yes: This jet is the VB candidate. Apply cut on jet substructure.

No: Try reconstructing your W candidates from pairs of jets.

Plot for k_T jets with R=0.6.

JET STRUCTURE

- k_T merging intrinsically ordered in scale.
 - Undo last merging: Get the Y-scale at which the jet would split into two subjets.
 - Y-scale ~ $O(m_{VB}/2)$ ~ k_T of one subjet wrt. other

