$4^{\text {TH }}$ FAMILY QUARKS AT ATLAS
 V. Erkcan Ozcan University College London

Beyond the 3SM generation at LHC era WS, CERN, Sept. 04, 2008

OUTLINE / MOTIVATION

- LHC scheduled to have first protons on Sept. 10, 2008.
- CM energy 7x larger than Tevatron, low x, gluon pdfs significant $=>$ pair production of heavy quarks...
- Recent exciting results from $\mathrm{CDF}=>$ the first $\sim 100 \mathrm{pb}^{-1}$ of data will be very interesting.
- $\mathrm{u}_{4} / \mathrm{d}_{4}$ discovery potential at ATLAS:
- ATLAS TDR: q_{4} mixing with t / b
- Recent results: q_{4} mixing with $\mathrm{u} / \mathrm{d} / \mathrm{s} / \mathrm{c}$

- Not in this talk - other heavy quark searches: isosinglets, FCNCs, ...

Tracking	$\|\eta\|<2.5$
EM Cal.	$\|\eta\|<3.2$
Had. Cal.	$\|\eta\|<\sim 4.9$

	Start-up of LHC	Ultimate goal
Electromagnetic energy uniformity	$1-2 \%$	0.5%
Electron energy scale	$\sim 2 \%$	0.02%
Hadronic energy uniformity	$2-3 \%$	$<1 \%$
Jet energy scale	$<10 \%$	1%
Inner-detector alignment	$50-100 \mu \mathrm{~m}$	$<10 \mu \mathrm{~m}$
Muon-spectrometer alignment	$<200 \mu \mathrm{~m}$	$30 \mu \mathrm{~m}$
Muon momentum scale	$\sim 1 \%$	0.02%

$4^{\text {TH }}$ GEN. QUARKS IN ATLAS TDR

- Pair production of u_{4} and $d_{4} s$ and possibly a heavy quarkonium state η_{4} was studied.
- Mixing assumed to be dominantly with $3^{\text {rd }}$ generation
- Democratic mass matrix (DMM) approach taken; thus assuming $\left|\mathrm{m}_{\mathrm{u} 4}-\mathrm{m}_{\mathrm{d} 4}\right| \sim$ few $\mathrm{GeV}<\mathrm{m}_{\mathrm{w}}$.
- But results obtained for "generic" heavy quarks that would decay as $u_{4} \rightarrow \mathrm{~Wb}$ and $\mathrm{d}_{4} \rightarrow \mathrm{Wt}$.
- Two mass values: $320 \mathrm{GeV}, 640 \mathrm{GeV}$

TDR ANALYSES

- $\mathrm{u}_{4} \mathbf{u}_{4}$ and $\mathrm{d}_{4} \mathrm{~d}_{4}$ analyses quite similar, though one involves the intermediate step of recontructing tops.
- Primary jets (direct daughters of u_{4}) at high P_{T}
- One of Ws in leptonic channel (with isolated μ or e), all others in hadronic channel
- b-tagging/b-veto as expected in the final state
- From each event only one q4 finally reconstructed, the fact that one expects two objects of same mass is not exploited.
- Main background from tt pair production.

TDR CONCLUSIONS

- With $\mathrm{O}\left(\mathrm{few} \mathrm{fb}^{-1}\right)$ enough for discovery.
- Next step? "Full" analysis, "recent" software...

A LOOK AT 4×4 CKM

- Take the measurements of the quark mixings from PDG and apply unitarity constraints for 4×4 CKM:

$$
\mathrm{CKM}_{4 \times 4}=\left[\begin{array}{cccc}
0.97377 \pm 0.00027 & 0.2257 \pm 0.0021 & 0.00431 \pm 0.00030 & <0.044 \\
0.230 \pm 0.011 & 0.957 \pm 0.095 & 0.0416 \pm 0.0006 & <0.46 \\
0.0074 \pm 0.0008 & 0.0406 \pm 0.0027 & >0.78 & <0.47 \\
<0.063 & <0.46 & <0.47 & >0.57
\end{array}\right]
$$

- Assume : $\left|V_{d_{4} u}\right|^{2}+\left|V_{d_{4} c}\right|^{2} \gg\left|V_{d_{4} t}\right|^{2}$

$$
\left|V_{u_{4} d}\right|^{2}+\left|V_{u_{4} s}\right|^{2} \gg\left|V_{u_{4} b}\right|^{2}
$$

- The final state would be: $\mathrm{pp} \rightarrow \mathrm{q}_{4} \mathrm{q}_{4} \rightarrow \mathrm{WjWj}, \mathrm{j}=$ light jet - Look at semileptonic channel: (lv)j(jj)j

EVENT GENERATION

- Signal events with CompHep 4.4.3. 12k signal events each for two choices of mass.

$\mathrm{m}_{\mathrm{q}^{4}}(\mathrm{GeV})$	500	750
$\Gamma_{\mathrm{q}^{4}}(\mathrm{GeV})$	8.2×10^{-3}	2.8×10^{-2}
$\sigma_{\mathrm{pp} \cdot d \mathrm{dd4}}(\mathrm{pb})$	2.63	0.25

- Background events with MadGraph 3.95. A total of $280+\mathrm{k}$ events at various QCD scales and jet P_{T} cuts.
- PDF=CTEQ6L1. Pythia 6.23 for parton showering, hadronization, etc.
- ATLFast fast simulation for detector effects.

BACKGROUNDS

- Initially considered WbWb (mainly tt) and (W / Z)Wjj.
- However $\mathrm{WbWbj}(\mathrm{ttj})$ has similar xsec to WbWb and satisfies selection criteria with higher efficiency.
- WbWb is the dominant background.
- tt2j xsec ~ 4 times smaller than $t t j$ in the relevant jet P_{T} range. Neglected.
- No matching was done, WbWb and WbWbj simply added conservatively.

EvENT SELECTION

Selection Criterion	$\varepsilon_{\text {sig. }}{ }^{\mathrm{m}=500}$	$\varepsilon_{\text {sig. }} \mathrm{m}=750$	$\varepsilon_{\text {bkg }}{ }^{\text {tij }}$
isolated e/ $\mu, \mathrm{P}_{\mathrm{T}}>15 \mathrm{GeV}$	32	32	29
$4+$ jets, $\mathrm{P}_{\mathrm{T}}>20 \mathrm{GeV}$	86	84	84
4 hardest jets: b-tagging veto	92	90	33
possible neutrino solution	75	71	76
$\mathrm{m}_{\mathrm{ij}}{ }^{\mathrm{W}}<200 \mathrm{GeV}$	50	44	75
2 hardest jets: $\mathrm{P}_{\mathrm{T}}>100 \mathrm{GeV}$	94	98	35
$\left\|\Delta \mathrm{mWj}^{\mathrm{q}^{4}}\right\|<100 \mathrm{GeV}$	56	49	50
$\varepsilon_{\text {total }}$	5.0	3.6	0.8

Kinematic Variables

- Primary jets at high P_{T}, very loose cuts.
- If backgrounds are found to be more significant in data, $\mathrm{P}_{\mathrm{T}}{ }^{\text {miss }} \& \mathrm{P}_{\mathrm{T}}{ }^{\text {lepton }}$ cuts.
- Ws can be reconstructed from single jet (will recover the long tail in m_{ij} distribution). $=>$ Recently shown to have excellent potential at ATLAS for $P_{T}{ }^{W}>\sim 250 \mathrm{GeV},+$ can use jet substructure.

RESULTS

- From each event two q_{4} candidates.
- Dominant background from WbWbj, other backgrounds an order of magnitude lower.

FIT - WHY?

- Obtain a blind method to identify the signal above the background.
- Blind = With essentially zero human input. Define one procedure to apply and irrespective of the mass of the q_{4} candidate, the fit tells you the result. Fit should be robust, ie. no tuning of starting parameters for different q_{4} masses.
- Backgrounds are extracted from data, ie. no dependence on background MC systematics. Also robustness against backgrounds not considered.

Fit - How?

- Breit-Wigner for the signal component.
- Crystal Ball for the sum of backgrounds:

Generated Toy Spectrum - Landau is a good empirical definition for mass of objects obtained by
4-momenta have c
Take two objects y
masses (whose dis
to each other. You

Fit Results

- Extract signal and background by integrating the fit within $\pm 2 \Gamma$ of signal BW.
- Divide by two to get number of events.
- Fit in very good agreement with real inputs.
- Significance computed as s/sqrt(s+b).
- Pseudo-MC to check whether reported significances.

	500 GeV	750 GeV
Luminosity	$1 \mathrm{fb}-1$	$10 \mathrm{fb}^{-1}$
Signal	192	134
Background	224	226
Significance	9.2	7.1

Discovery Range

- Reach plot obtained by: integrating BG fit function, extrapolating for signal efficiency and calculating the x -sec as function of mass.

CONCLUSION

- Recently many similar analyses (ex: search for isosinglet quarks in E6) went through the fullsimulation studies and ATLFast results were found to be not too optimistic.
- Expect the same for 4th-family quarks. Also note that not all ideas exploited yet.
- ATLAS has clear potential for 5σ discovery even with the first $\sim 100 \mathrm{pb}-1$ of data (for $\mathrm{m}_{\mathrm{q} 4} \sim 400-500 \mathrm{GeV}$).

BACK-UP SLIDES

HADRONIC VBS: 1 OR 2 JETS

- At high enough P_{T}, hadronic VB starts to create a single jet.
- So start by looking at each event for jets with mass close to W / Z ?

Yes: This jet is the VB candidate. Apply cut on jet substructure.

No: Try reconstructing your W candidates from pairs of jets.

Plot for k_{T} jets with $\mathrm{R}=0.6$.

JET STRUCTURE

- k_{T} merging intrinsically ordered in scale.
- Undo last merging: Get the Y-scale at which the jet would split into two subjets.
- Y-scale $\sim \mathrm{O}\left(\mathrm{m}_{\mathrm{VB}} / 2\right) \sim \mathrm{k}_{\mathrm{T}}$ of one subjet wrt. other

