Scattering of Heavy hadrons

David Milstead

A. Kaidalov, Y. de Boer, O. Piskounova

New physics searches – the experimentalist's perspective

Motivation

- New collider energy regime about to be accessed.
- Possible solutions to the hierarchy problem suggest new physics at TeV energies.
- Fourth generation quarks and other heavy coloured objects.

Need observables

Jets, missing Et, stable massive particles.

Expecting the unexpected

Assume signature of SMP as a slow muon-like object. Is it possible to observe the SMP and extract the charge? Use cross section + final state expectations (where available). Scattering/energy loss in material.

SMP	charge	Scattering
lepton, free quark (fractional charge)	Electric	Ok
Colour triplet, octet (leading to H-hadron)	Colour	? (this talk)
Dirac monopole, fractional magnetic charge	Magnetic	Ok

+ combinations of above.

Some event topologies for different SMPs

Understanding scattering in material is crucial

Heavy hadron scattering

Heavy exotic meson from massive exotic colour triplet Q and SM quark \overline{q} .

$$M_O \approx M_H = 200 \text{ GeV } E = 1 \text{ TeV}$$

$$\Rightarrow \gamma = \frac{E}{M} = 5$$

$$M_q \approx 0.2 \,\mathrm{GeV} \Rightarrow \mathrm{KE_q} = (\gamma - 1) M_q \approx \mathrm{GeV}$$

Heavy quark doesn't interact

Low energy collision between SM quark in material.

Recent ref: hep-ex/0404001 (A.C. Kraan)

What's on the market?

Generic model: all 2-2 and 2-3 processes allowed.
Constant cross section
Separated by phase space.
Same Clebsch-Gordon co-efficients.
hep-ex/0404001 (A.C. Kraan)
hep-ph/0612161 (Mackeprang,Rizzi)
Geant3 and Geant 4.

Triple Regge estimates for Gluinos

hep-ph/9806361 (Baer, Chung, Gunion) hep-ph/9912436 (Mafi, Raby)

	R*	R	R-
proton sextering: 2-2 processes	$R^{\dagger}y \rightarrow R^{+}y$ $R^{\dagger}y \rightarrow S^{+}\pi^{0}$ $R^{\dagger}y \rightarrow S^{+}\pi^{+}$	$R^{0}y \rightarrow R^{0}y$ $R^{0}y \rightarrow R^{+}y$ $R^{0}y \rightarrow S^{++}y -$ $R^{0}y \rightarrow S^{+}y^{0}$ $R^{0}y \rightarrow S^{0}x^{+}$	$R^-p \rightarrow R^-p$ $R^-p \rightarrow R^0n$ $R^-p \rightarrow S^+n^-$ $R^-p \rightarrow S^0r^0$
Deutysa sestivating: 2-12 processes	$R^+n \rightarrow R^+n$ $R^+n \rightarrow R^0 + p$ $R^+n \rightarrow S^{++}s^-$ $R^+n \rightarrow S^+n^0$ $R^+n \rightarrow S^0\pi^+$	$R^0n \rightarrow R^0n$ $R^0n \rightarrow R^-p$ $R^0n \rightarrow S^+n^-$ $R^0n \rightarrow S^0\pi^0$ $R^0n \rightarrow S^-\pi^+$	$R^-n \rightarrow R^-n$ $R^-n \rightarrow R^0n^-$ $R^-n \rightarrow S^0\pi^-$ $R^0n \rightarrow S^-\pi^0$
proton sestiaring: 2-3 processes	$R^{+}y \rightarrow R^{+}y\pi^{0}$ $R^{0}p \rightarrow R^{+}n\pi^{+}$ $R^{+}y \rightarrow R^{0}p\pi^{+}$ $R^{+}y \rightarrow S^{+}+\pi^{0}\pi^{0}$ $R^{+}y \rightarrow S^{+}+\pi^{+}\pi^{-}$ $R^{+}y \rightarrow S^{+}\pi^{+}\pi^{0}$ $R^{+}y \rightarrow S^{0}\pi^{+}\pi^{+}$	$H^{0}p \rightarrow H^{0}pr^{0}$ $H^{0}p \rightarrow H^{0}en^{+}$ $H^{0}p \rightarrow H^{0}en^{+}$ $H^{0}p \rightarrow H^{+}pm^{-}$ $H^{0}p \rightarrow H^{+}rn^{0}$ $H^{0}p \rightarrow H^{-}rn^{0}$ $H^{0}p \rightarrow S^{+}n^{0}n^{-}$ $H^{0}p \rightarrow S^{+}n^{0}n^{0}$ $H^{0}p \rightarrow S^{+}n^{0}n^{0}$ $H^{0}p \rightarrow S^{+}n^{0}n^{0}$ $H^{0}p \rightarrow S^{-}n^{+}n^{0}$ $H^{0}p \rightarrow S^{-}n^{+}n^{0}$	$R^-p \rightarrow R^-p\pi^0$ $R^-p \rightarrow R^-n\pi^+$ $R^-p \rightarrow R^+n\pi^-$ $R^-p \rightarrow R^0p\pi^-$ $R^-p \rightarrow R^0p\pi^-$ $R^-p \rightarrow R^+n\pi^-$ $R^-p \rightarrow R^+n\pi^-$ $R^-p \rightarrow R^+n\pi^-$ $R^-p \rightarrow R^0\pi^+$ $R^-p \rightarrow R^-\pi^+$
ovutnas sentiuris g: 2-3 prosence	$R^+n \rightarrow R^+nn^0$ $R^+n \rightarrow R^+nn^0$ $R^+n \rightarrow R^+nn^ R^+n \rightarrow R^+nn^+$ $R^+n \rightarrow R^+nn^+$	$H^0 n \rightarrow H^0 n n^0$ $H^0 n \rightarrow S^{n-1} n^n$ $H^0 n \rightarrow S^0 n^0 n^0$ $H^0 n \rightarrow S^0 n^0 n^0$ $H^0 n \rightarrow S^0 n^0 n^0$	$R^-n \rightarrow R^-v\sigma^0$ $R^-n \rightarrow R^-v\sigma^0$ $R^-n \rightarrow R^0v\sigma^ R^-n \rightarrow S^+\sigma^-\sigma^ R^-n \rightarrow S^0\sigma^-\sigma^0$ $R^-n \rightarrow S^-\sigma^0\sigma^0$ $R^-n \rightarrow S^-\sigma^0\sigma^0$

Calculating energy loss

Triple regge ansatz to estimate energy loss of H-hadron.
Separate into pomeron and reggeonic contributions.

$$\frac{d^{2}\sigma_{RRR}}{dtdM_{X}^{2}}(\gamma, M_{X}^{2}) = \frac{1}{M_{X}^{2}}\sigma_{R}^{2}(\gamma)C_{RRR}\exp\left[\left(2B_{RH} + B_{RRR} + 2\alpha'_{R}\ln\left(\frac{2\gamma M_{0}^{2}}{M_{X}^{2}}\right)\right)t\right]\left(\frac{M_{0}^{2}}{M_{X}^{2}}\right)^{\Delta_{R}} (4)$$

$$\frac{d^{2}\sigma_{RRP}}{dtdM_{X}^{2}}(\gamma, M_{X}^{2}) = \frac{1}{M_{X}^{2}}\sigma_{R}^{2}(\gamma)C_{RRP}\exp\left[\left(2B_{RH} + B_{RRP} + 2\alpha'_{P}\ln\left(\frac{2\gamma M_{0}^{2}}{M_{X}^{2}}\right)\right)t\right]\left(\frac{M_{0}^{2}}{M_{X}^{2}}\right)^{2\Delta_{R} - \Delta_{P}} (5)$$

$$\frac{d^{2}\sigma_{PPR}}{dtdM_{X}^{2}}(\gamma, M_{X}^{2}) = \frac{11}{M_{X}^{2}}\sigma_{P}^{2}(\gamma)C_{PPR}\exp\left[\left(2B_{PH} + B_{PPR} + 2\alpha'_{P}\ln\left(\frac{2\gamma M_{0}^{2}}{M_{X}^{2}}\right)\right)t\right]\left(\frac{M_{0}^{2}}{M_{X}^{2}}\right)^{2\Delta_{P} - \Delta_{R}} (6)$$

$$\frac{d^{2}\sigma_{PPP}}{dtdM_{X}^{2}}(\gamma, M_{X}^{2}) = \frac{1}{M_{X}^{2}}\sigma_{P}^{2}(\gamma)C_{PPP}\exp\left[\left(2B_{PH} + B_{PPP} + 2\alpha'_{P}\ln\left(\frac{2\gamma M_{0}^{2}}{M_{X}^{2}}\right)\right)t\right]\left(\frac{M_{0}^{2}}{M_{X}^{2}}\right)^{\Delta_{P}} (7)$$

Take free parameters from low energy hadron-hadron data.

Differential hadronic energy loss

Energy loss per collision around a GeV

Exotic hadron model

Fourth generation quark model

Hadronise into H-mesons (90%) and baryons (10%)

Propagate H-mesons through – 15 interaction lengths of iron. Use kinematic spectra for pp at cm=14 TeV. $|\eta| < 2.5$, $\beta > 0.7$.

Energy loss

(Qq) – quark annihilation with nucleon quarks

(Qq) – no quark Annihilation with nucleon quarks.

Topologies

Detector with inner tracking and muon tracking chambers enclosed by calorimeter for scattering..

1	One H-hadron produced with non-zero charge which doesn't change
2	Both particles produced with non-zero charge which don't change.
3	Both particles produced with non-zero charge. One changes to neutral.
4	One partice produced with zero and the other with non-zero charge. The zero charge particle converts to a charged state.
5	Both particles are produced with non-zero charge but convert to zero charge particles.
6	At least one particle leaves the detector material with non-zero charge of opposite sign to the charge it was produced with.

Expected rates for various topologies for 10fb⁻¹

	No mixing		Maximal mixing			
Topology	Mass (GeV)			Mass (GeV)		
	200	500	1000	200	500	1000
1	4.9×10^{5}	4.3×10^{3}	57	4.1×10^{5}	3.5×10^{3}	48
2	3.0×10^{4}	2.6×10^2	3	2.2×10^{4}	1.9×10^{2}	2
3	9.6×10^{4}	8.3×10^{2}	9	8.2×10^{4}	6.8×10^{2}	8
4	6.0×10^{4}	5.2×10^2	6	4.8×10^{4}	4.0×10^{2}	5
5	6.4×10^{4}	5.3×10^2	6	6.3×10^{4}	5.5×10^2	6
6	0	0	0	8.1×10^4	7.2×10^2	9

Mixing: neutral H-meson states can oscillate into their anti-particles.

$$\begin{split} H^{+}(\widetilde{u}\overline{d}\,) + n &\to H^{0}(\widetilde{u}\overline{u}\,) + p \\ H^{0}(\widetilde{u}\overline{u}\,) &\to \overline{H}^{0}(\overline{\widetilde{u}}\,u) \\ \overline{H}^{0}(\overline{\widetilde{u}}\,u) + n &\to \overline{H}^{-}(\overline{\widetilde{u}}\,d) + p \end{split}$$

Summary

- Observation (or even non-observation) of stable massive particles important in BSM physics at the LHC
- Understanding scattering is critical for any search
- Hadronic scattering model for colour triplets (arXiv:0710.3930).
- Quantify experimental uncertainties