Electroweak scale active ν_R 's and implications

P. Q. Hung

University of Virginia

Beyond the 3SM Generation at the LHC era, 4-5 September 2008

Five (surely more) reasons why there is life beyond the 3SM generation

Beyond 3SM generation? Extra fermions (left-handed or right-handed) which are EW non-singlets.

- Why not? What's so special about about 3 generations?
- Not ruled out experimentally. Might even have implications concerning the SM Higgs boson (Kribs et al), EWSB (Holdom,...), rare B decays (Hou, Soni,...), etc...Recent analysis of experimental constraints on a 4th generation → more

flexible regions of allowed masses and mixings than previously believed (Sher and pqh).

- A 4th generation might even bring about coupling constant unification at 2-loop level without the need for SUSY (pqh '97).
- Mirror replication of SM families: Left-handed \rightarrow Right-handed. Active right-handed neutrinos \rightarrow Possibility of electroweak-scale ν_R 's \rightarrow Electroweak-scale see-saw mechanism. Directly testing it at the LHC finally?
- Quark-lepton unification à la Pati-Salam → Extra EW singlet neutrinos with astrophysical implications → Further embed-

ding into SO(2m + 4) groups leads to an argument in favor of 4 (SM and mirror) generations.

The last 2 items: Focus of this talk.

Mirror fermions and electroweak scale ν_R 's

(hep-ph/0612004, P.L.B**649**, 275 (2007))

Suppose there is a mirror replication of the SM fermions.

Questions:

 What fundamental roles could mirror fermions play in our understanding of the SM?

- Would the existence of mirror fermions necessitate an extended Higgs sector?
- If they exist, how do we detect them?
- Constraints from EW precision data?
- Could there be theoretical motivations for such mirror fermions?
- If yes, is there anything else?
- If yes, could there be some insight into the fundamental question of the number of generations itself?

What can mirror fermions do?

- I) What do we mean by mirror fermions?
 - EW gauge group: $SU(2)_L \otimes U(1)_Y$.
 - Leptonic content:

Mirror fermions: same gauge group, same fermion representations but with opposite chiralities to SM fermions.

$$- \ \underline{SU(2)_L \ \text{doublets}} : \ \text{SM:} \ l_L = \left(\begin{array}{c} \nu_L \\ e_L \end{array} \right) \ \ ; \ \ \text{Mirror:} \ \ l_R^M = \left(\begin{array}{c} \nu_R^M \\ e_R^M \end{array} \right)$$

(In fact the SM $SU(2)_L$ could be called a "vector-like" model: $SU(2)_L \rightarrow SU(2)_V$)

 $e_R^M \neq e_R$: Neutral current experiments $\rightarrow e_R$: $SU(2)_L$ singlet.

- $SU(2)_L$ singlets : SM: e_R ; Mirror: e_L^M
- Quark content:
 - $\ \underline{SU(2)_L} \ \text{doublets} : \ \text{SM:} \ q_L = \left(\begin{array}{c} u_L \\ d_L \end{array} \right) \ \ ; \ \ \text{Mirror:} \ \ q_R^M = \left(\begin{array}{c} u_R^M \\ d_R^M \end{array} \right)$
 - $SU(2)_L$ singlets : SM: u_R , d_R ; Mirror: u_L^M , d_L^M

II) Now that we have defined what mirror fermions are, what can they do?

Focus first on leptons.

- Mirror fermions have the same EW gauge interactions as SM fermions.
- What kind of mass terms that involve mirror fermions?

Under
$$SU(2)_L$$
:

$$ar{l}_L \, l_R^M$$
: 1 or 3

$$\overline{l}_{R}^{M}\,e_{L}^{M}$$
: 2

$$ar{e}_R\,e_L^M$$
: 1 $l_R^{M,T}\,\sigma_2 l_R^M$: 1 or 3

What Higgs structure for those bilinears?

```
SM Higgs doublet: \Phi (Y/2=-1/2) (New) Higgs triplet: \tilde{\chi} (Y/2=1) (New) Higgs singlet: \phi_S (Y/2=0)
```

- Couplings:
 - Lepton-number violating: $\mathcal{L}_M = g_M l_R^{M,T} \sigma_2 \tau_2 \tilde{\chi} l_R^M$

$$\tilde{\chi} = \begin{pmatrix} \frac{1}{\sqrt{2}} \chi^+ & \chi^{++} \\ \chi^0 & -\frac{1}{\sqrt{2}} \chi^+ \end{pmatrix}$$

Term involving χ^0 :

$$g_M \, \nu_R^{M,T} \, \sigma_2 \, \chi^0 \, \nu_R^M$$

Majorana mass of ν_R^M :

$$\langle \chi^0 \rangle = v_M \Rightarrow M_R = g_M v_M$$

- Lepton-number conserving:
$$\mathcal{L}_S = g_{Sl} \, \bar{l}_L \, \phi_S \, l_R^M + g_{Sl}' \, \bar{e}_R \, \phi_S \, e_L^M + H.c.$$

Dirac mass of neutrinos:

$$\langle \phi_S \rangle = v_S \Rightarrow m_D = g_{Sl} v_S$$

– Seesaw:

$$\overline{M_R}$$
 ; $-m_D^2/M_R$

– Mass scales:

If
$$v_M \sim O(\Lambda_{EW}) \sim 246\,GeV$$
 and $g_M \sim O(1)$ (not necessarily so) $\Rightarrow M_R \sim O(\Lambda_{EW})$ and $m_D \sim 10^5\,eV$ for $m_\nu \leq O(1\,eV)$. Contrast that with generic seesaw: $M_R \sim O(\Lambda_{GUT})$ and $m_D \sim O(\Lambda_{EW})$

Masses for charged mirror leptons:

 $g_{eM}\bar{l}_R^M \Phi e_L^M + H.c.$ \Rightarrow Masses proportional to SM doublet VEV. (Similar interactions for the SM and mirror quarks.)

Mass mixing between charged SM and mirror's come from

 $\mathcal{L}_S = g_{Sl} \, \bar{l}_L \, \phi_S \, l_R^M + g_{Sl}' \, \bar{e}_R \, \phi_S \, e_L^M + H.c. \Rightarrow$ proportional to $m_D \sim 10^5 \, eV \Rightarrow$ Negligible!

- No terms such as $l_L^T \sigma_2 \tau_2 \tilde{\chi} l_L$ because of extra $U(1)_M$ symmetry or forbidden by gauge invariance in a Pati-Salam extension of the model.
- III) Problem with and solution to $v_M \sim O(\Lambda_{EW}) \sim 246\,GeV$
 - VEV of a Higgs triplet of with $O(\Lambda_{EW})$ breaks badly the relation $\rho=1$ at tree level!
 - \bullet Z width \Rightarrow $M_R > M_Z/2$ since ν_R^M 's couple to the Z boson at tree level.

• To recover $\rho=1$ with $v_M\sim O(\Lambda_{EW})\sim 246\,GeV$, add $\xi=(3,Y/2=0)$ such that

$$\chi = \begin{pmatrix} \chi^{0} & \xi^{+} & \chi^{++} \\ \chi^{-} & \xi^{0} & \chi^{+} \\ \chi^{--} & \xi^{-} & \chi^{0*} \end{pmatrix}$$

(Chanowitz and Golden; Georgi and Machacek)

 \Rightarrow Global $SU(2)_L \otimes SU(2)_R$ symmetry of the Higgs potential

with:
$$\chi = (3,3)$$
 and $\Phi = \begin{pmatrix} \phi^0 & -\phi^+ \\ \phi^- & \phi^{0,*} \end{pmatrix} = (2,2)$

$$\langle \chi \rangle = \left(egin{array}{ccc} v_M & 0 & 0 \\ 0 & v_M & 0 \\ 0 & 0 & v_M \end{array}
ight)$$

and

$$\langle \Phi \rangle = \left(\begin{array}{cc} v_2 & 0 \\ 0 & v_2 \end{array} \right)$$

VEV structure dictated by proper vacuum alignment.

 $SU(2)_L \otimes SU(2)_R \to SU(2) \Rightarrow M_W = g\,v/2$ and $M_Z = M_W/\cos\theta_W$, where

$$v = \sqrt{v_2^2 + 8 v_M^2} \sim 246 \, GeV$$
.

- $\Rightarrow \rho = 1$! even if $v_M \sim \Lambda_{EW}$!!
- $\Rightarrow M_R \sim O(\Lambda_{EW})$!

In fact $M_Z/2 < M_R < \Lambda_{EW}$

• How large can v_M be?

Tree unitarity constraint on triplet scalar scattering (Aoki and Kanemura) $\Rightarrow \sin\theta_H = \frac{2\sqrt{2}\,v_M}{v} < 0.9 \Rightarrow v_M < 87\,GeV$

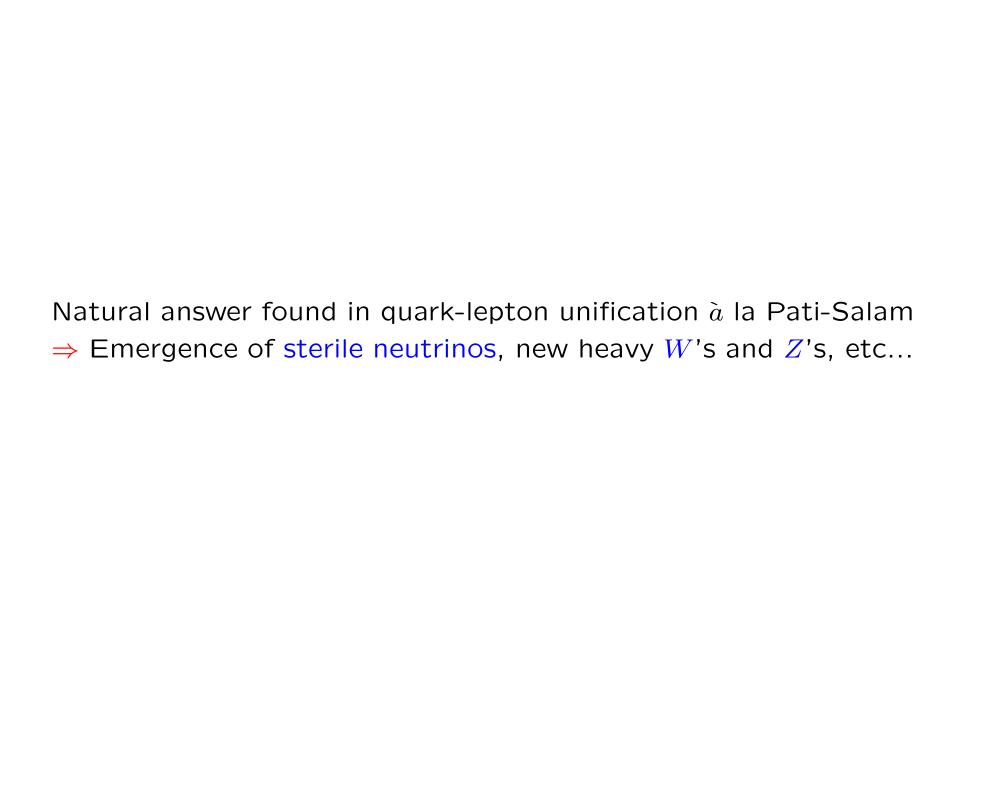
 \Rightarrow Limit on $M_R = g_M v_M!$

For $g_M \sim O(1) \Rightarrow 45.6 \, GeV < M_R < 87 \, GeV$

Even for $g_M^2/4\pi < O(1) \Rightarrow 45.6 \, GeV < M_R < 308 \, GeV$.

Interesting connection between the study of the triplet scalar sector and the mass of ν_R^M (Aranda, Hernandez and PQH, in preparation)

Where could the mirror fermions come from?



Quark-lepton unification \hat{a} la Pati-Salam and consequences

Nucl. Phys. B805, 326 (2008), arXiv: 0805.3486v1 [hep-ph]

Pati-Salam: quarks and leptons grouped into a quartet of $SU(4)_{PS}$.

I) Model:

 $SU(4)_{PS}\otimes SU(2)_L\otimes SU(2)_R\otimes SU(2)_L'\otimes SU(2)_R'$ (similar to the group considered by Hung, Buras, Bjorken (82) and Buras and Hung (2003): Petite Unification)

with

$$G \xrightarrow{M} G_1 \xrightarrow{\tilde{M}} G_2 \xrightarrow{\tilde{M}_{LR}} SU(3)_c \otimes SU(2)_V \otimes U(1)_Y$$
 where

$$G = SU(4)_{PS} \otimes SU(2)_L \otimes SU(2)_R \otimes SU(2)_L' \otimes SU(2)_R'$$

$$G_1 = SU(3)_c \otimes SU(2)_L \otimes SU(2)_R \otimes SU(2)_L' \otimes SU(2)_R' \otimes U(1)_S$$

$$G_2 = SU(3)_c \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_Y$$

$$Q = T_{3V} + \frac{Y}{2}$$

$$T_{3V} = T_{3L} + T_{3R}$$

$$\frac{Y}{2} = T_{3L}' + T_{3R}' + \sqrt{\frac{2}{3}}T_{15}$$

Fermion representations:

$$\Psi_L = (\left(egin{array}{c} u_L \\ d_L \end{array}
ight)_i, \left(egin{array}{c}
u_L \\ e_L \end{array}
ight)_i = (4,2,1,1,1)$$

$$\Psi_R^M = \left(\begin{pmatrix} u_R^M \\ d_R^M \end{pmatrix}_i, \begin{pmatrix} \nu_R^M \\ e_R^M \end{pmatrix}_i \right) = (4, 1, 2, 1, 1)$$

$$\Psi_R = \left(\begin{pmatrix} u_R \\ d_R \end{pmatrix}_i, \begin{pmatrix} N_R \\ e_R \end{pmatrix}_i \right) = (4, 1, 1, 1, 2)$$

$$\Psi_L^M = (\left(\begin{array}{c} u_L^M \\ d_L^M \end{array}\right)_i, \left(\begin{array}{c} N_L \\ e_L^M \end{array}\right)_i) = (4, 1, 1, 2, 1)$$

Emergence of sterile $(SU(2)_V \text{ singlet})$ neutrinos of both helicities: N_L and $N_R!!$

Quark-lepton unification a la Pati-Salam of the electroweak-scale non-sterile ν_R model inevitably leads to the existence of sterile neutrinos with possible astrophysical consequences (Warm Dark Matter, Pulsar kicks, etc...)!

II) Generalized "seesaw" involving N_L and N_R :

$$M_4 = \left(egin{array}{ccccc} 0 & m_D & 0 & m_{
u_L N_R} \ m_D & M_R & m_{
u_R^M N_L} & 0 \ 0 & m_D^N & 0 & m_D^N \ m_{
u_L N_R} & 0 & m_D^N & M_R^N \end{array}
ight)$$

Some (many more) numerical examples (see backup slides):

$$m_{S1} \approx -3.24 \, keV$$

$$\tilde{\nu}_{S1} \approx -2.2 \times 10^{-5} \, \nu_L + 4 \times 10^{-9} \, \nu_R^M - N_L + 1.8 \times 10^{-4} \, N_R$$

$$m_{S2} \approx 100 \, GeV$$

$$\tilde{\nu}_{S2} \approx 4 \times 10^{-9} \, \nu_L + 0 \, \nu_R^M + 1.8 \times 10^{-4} \, N_L + N_R$$

keV sterile neutrinos mix very little ($\sim 10^{-5}$) with active light neutrinos \Rightarrow Right kind of parameter range for the sterile neutrino explanation of WDM and pulsar kicks,...

keV sterile neutrinos are hard to come by when they are the right-handed neutrinos participating in the seesaw mechanism.

III) Constraints on breaking scales from $\sin^2 \theta_W(M_Z)$:

Computation of $\sin^2 \theta_W(M_Z)$ relates its experimental value to different breaking scales and among each other.

Question: How big is the P-S breaking scale M (and subsequent scale \tilde{M}) if the scale M_{LR} , where $SU(2)_L \otimes SU(2)_R \to SU(2)_V$, is less than $1 \, TeV$?

Answer: For $\frac{M_{LR}}{M_Z}=5-10\Rightarrow \tilde{M}\sim 10^7-10^8\,GeV$ and $M\sim 10^{15}-10^{17}\,GeV$

Proton decay is possible, not by the P-S gauge bosons, but by the mediation of heavy scalars. Families from spinors: a case for four generations

What if there is a 4th generation? Any guiding principles? Families from spinors.

- Our model contains: $SU(2)_L \otimes SU(2)_R \otimes SU(2)_L' \otimes SU(2)_R'$.
- $SO(4) \approx SU(2) \otimes SU(2)$
- Let $\psi_{+} = (2,1)$ and $\psi_{-} = (1,2)$ under $SU(2) \otimes SU(2)$.

- Spinor of $SO(2m+4) = 2^{m-1}\psi_{+} + 2^{m-1}\psi_{-}$ of SO(4) or 2^{m-1} families.
- Requirement: SO(2m + 4) anomaly-free
 - -m=1 (one family) $\rightarrow SO(6) \rightarrow \text{not}$ anomaly free
 - -m=2 (two families) \rightarrow OK but phenomenologically we know there are more than two families
 - -m=3 (four families) $\rightarrow SO(10)$
 - -m=4 (eight families of SM and mirror fermions) \rightarrow severe problems with asymptotic freedom; QCD rapidly becomes non-asymptotically free at energies above the masses of all fermions.

In this context, four families appear to be a favored choice!

• One can envision:

$$SO(10) \rightarrow SU(4)_H \otimes SU(2)_L \otimes SU(2)_R$$

$$SO(10)' \rightarrow SU(4)'_H \otimes SU(2)'_L \otimes SU(2)'_R$$

• Two separate Horizontal gauge groups: $SU(4)_H$ for $SU(2)_V$ non-singlets and $SU(4)_H^\prime$ for $SU(2)_V$ singlets.

Implications

 Electroweak scale non-sterile right-handed neutrinos can be produced and detected (through e.g. like-sign dilepton events) at the LHC ⇒ High energy equivalent of neutrinoless double beta decay!

$$q + \bar{q}/e^{+} + e^{-} \rightarrow Z \rightarrow \nu_{R} + \nu_{R} \rightarrow l_{R}^{M,\mp} + l_{R}^{M,\mp} + W^{\pm} + W^{\pm}$$

 $ightarrow l_L^\mp + l_L^\mp + W^\pm + W^\pm + \phi_S + \phi_S$, where ϕ_S would be missing energy.

Many more non-SM modes! Details of phenomenology in preparation with Dilip Gosh, Nguyen Nhu Le and PQH.

- LFV processes such as $\mu \to e \gamma$ and $\tau \to \mu \gamma$ put constraints on the model (PQH, P.L.B659, 585 (2008)). Correlation between the observability or non-observability of these processes with how displaced the decay vertices may be.
- A rich Higgs structure, including doubly charged scalars such as χ^{++}, χ^{--} . In addition to a possible production of these scalars, like-sign dilepton events can be generated by first producing the doubly-charged Higgses followed by their decays into like-sign charged mirror leptons which subsequently decay into like-sign SM leptons. (Aranda, Hernandez, PQH)
- A Pati-Salam extension of the electroweak scale non-sterile ν_R model completes the particle assignment \Rightarrow Introduction

of the sterile N_L and N_R . Quark-lepton unification in this model requires the existence of the sterile neutrinos with both helicities, in addition to the non-sterile right-handed neutrinos! Some of the sterile neutrinos can have keV masses.

keV N_L :

- Warm Dark Matter: Problems with ΛCDM scenario in explaining structure formation, in particular the number of dwarf galaxies. keV sterile neutrinos appear to alleviate this problem. (For a review see Alex Kusenko papers.)
- Pulsar kicks: keV sterile neutrinos can carry a large amount of supernova energy \Rightarrow could explain the "large" recoil velocities of the neutron stars (pulsar kicks) which could be as much as 10^3 km/s (see Kusenko).

What about the heavier N_R ?

- W's and Z's (orthogonal states of SM W's and Z) "light" enough to be detected at the LHC? Its mass is correlated to the PS mass M. Through the color-non-singlet scalars, proton decay can occur and is governed in parts by M.
- Families from spinors ⇒ Four families appear to be a favored choice!

Is there a 4th family?

 Electroweak precision parameters such as S and T can be satisfied experimentally with additional chiral families if the SM is extended in the Higgs sector. SM with two Higgs doublets \Rightarrow up to three additional chiral families (He, Polonsky, Su). With additional Higgs triplets, one can have negative contributions to S depending on the mass splitting inside the triplets.

THE FLAVOUR QUESTION IS JUST AS IMPORTANT AS THE QUEST FOR THE HIGGS AT THE LHC!

HIGGS SECTOR ←⇒ FLAVOUR SECTOR

BACKUP SLIDES:

Generalized "see-saw" involving N_L and N_R

- A) Active and sterile neutrino mass scales:
 - Dirac mass terms involve

$$\bar{\Psi}_L \times \Psi_R = (1+15,2,1,1,2)$$
 ,

$$ar{\Psi}_R^M imes \Psi_L^M = (1+15,1,2,2,1)$$
 ,

$$ar{\Psi}_L \, \Psi_R^M = (1+15,2,2,1,1)$$
 ,

$$ar{\Psi}_R imes \Psi_L^M = (1+15,1,1,2,2)$$

Higgs fields:

$$\Phi_S = (1, 2, 1, 1, 2); \ \Phi_A = (15, 2, 1, 1, 2),$$
 $\Phi_S^M = (1, 1, 2, 2, 1); \ \Phi_A^M = (15, 1, 2, 2, 1),$ $\tilde{\Phi}_S = (1, 2, 2, 1, 1),$ $\Phi_S^N = (1, 1, 1, 2, 2).$

Majorana mass terms involve

$$\Psi_R^{M,T} \sigma_2 \Psi_R^M = (4 \times 4 = 6 + 10, 1, 1 + 3, 1, 1)$$

$$\Psi_R^T \sigma_2 \Psi_R = (4 \times 4 = 6 + 10, 1, 1, 1, 1 + 3)$$

Higgs fields

$$\Phi_{10} = (\overline{10} = 1 + \overline{3} + \overline{6}, 1, 3, 1, 1)$$

$$\Phi_{10N} = (\bar{10} = 1 + \bar{3} + \bar{6}, 1, 1, 1, 3)$$

VEV's:

$$\langle \phi_{S,u}^0 \rangle = v_u$$
; $\langle \phi_{S,d}^0 \rangle = v_d$

$$\langle \phi_{S,u}^{0,M} \rangle = v_u^M$$
; $\langle \phi_{S,d}^{0,M} \rangle = v_d^M$

$$\frac{\langle \phi_{A,u}^{15} \rangle}{2\sqrt{6}} = v_{15,u}$$
; $\frac{\langle \phi_{A,d}^{15} \rangle}{2\sqrt{6}} = v_{15,d}$

$$\frac{\langle \phi_{A,u}^{M,15} \rangle}{2\sqrt{6}} = v_{15,u}^{M}$$
 ; $\frac{\langle \phi_{A,d}^{M,15} \rangle}{2\sqrt{6}} = v_{15,d}^{M}$

$$\langle \tilde{\Phi}_S \rangle = \left(egin{array}{cc} v_S & 0 \\ 0 & v_S \end{array} \right)$$

$$\langle \Phi_S^N \rangle = \left(\begin{array}{cc} v_S^N & \mathbf{0} \\ \mathbf{0} & v_S^N \end{array} \right)$$

Generalized see-saw:

$$M_{4} = \begin{pmatrix} 0 & m_{D} & 0 & m_{\nu_{L}N_{R}} \\ m_{D} & M_{R} & m_{\nu_{R}^{M}N_{L}} & 0 \\ 0 & m_{\nu_{R}^{M}N_{L}} & 0 & m_{D}^{N} \\ m_{\nu_{L}N_{R}} & 0 & m_{D}^{N} & M_{R}^{N} \end{pmatrix}$$

• One numerical example (there are several) with e.g. $M_R = 100\,GeV$:

$$\frac{M_4}{M_R} = \begin{pmatrix} 0 & 10^{-6} & 0 & 4 \times 10^{-9} \\ 10^{-6} & 1 & 4 \times 10^{-9} & 0 \\ 0 & 4 \times 10^{-9} & 0 & 1.8.10^{-4} \\ 4 \times 10^{-9} & 0 & 1.8.10^{-4} & 1 \end{pmatrix}$$

$$m_1 \approx -0.1 \, eV$$

$$\tilde{\nu}_1 \approx -\nu_L + 10^{-6} \, \nu_R^M + 2.2 \times 10^{-5} \, N_L - 2.2 \times 10^{-11} \, N_R$$

$$m_2 \approx 100 \, GeV$$

$$\tilde{\nu}_2 \approx 10^{-6} \, \nu_L + \nu_R^M + 10^{-9} \, N_L - 7.3 \times 10^{-13} \, N_R$$

$$m_{S1} \approx -3.24 \, keV$$

$$\tilde{\nu}_{S1} \approx -2.2 \times 10^{-5} \, \nu_L + 4 \times 10^{-9} \, \nu_R^M - N_L + 1.8 \times 10^{-4} \, N_R$$

 $m_{S2} \approx 100 \, GeV$

$$\tilde{\nu}_{S2} \approx 4 \times 10^{-9} \, \nu_L + 0 \, \nu_R^M + 1.8 \times 10^{-4} \, N_L + N_R$$

- One can find examples where N_L and N_R have masses of order O(keV)'s and O(MeV)'s respectively.
- B) Remarks on mirror fermion masses:

Mirror fermions as defined above have not been observed \Rightarrow They must be HEAVY. But why?

One possibility:

$$\mathcal{M}_H = m_3 \begin{pmatrix} 0 & \epsilon^3 & 0 \\ \epsilon^3 & \epsilon^2 & \epsilon^2 \\ 0 & \epsilon^2 & 1 \end{pmatrix}$$

To $O(\epsilon^4)$ the eigenvalues are $-m_3 \epsilon^4$, $m_3 \epsilon^2$ and $m_3 (1+\epsilon^4)$. With $\epsilon_u = 0.07$ and $\epsilon_d = 0.21$ one can reproduce the phenomenological mass hierarchies at the scale M_Z (Rosenfeld and Rosner).

For mirror fermions,

Ansatz:

$$\mathcal{M}_M = m_M \left(\begin{array}{ccc} 0 & \epsilon_M^3 & 0 \\ \epsilon_M^3 & \epsilon_M^2 & \epsilon_M^2 \\ 0 & \epsilon_M^2 & 1 \end{array} \right) \text{ with }$$

$$\epsilon_M^u \sim \epsilon_M^d \sim \frac{M_{LR}}{M_Z} \epsilon_{SM}$$

Recall: Above M_{LR} , SM and Mirror fermions have separate $SU(2)_L$ and $SU(2)_R$ gauge interactions while below they have the same $SU(2)_V$ gauge interactions.

Example: $\epsilon_{SM}\sim$ 0.09, $\frac{M_{LR}}{M_Z}\sim$ 10, and $m_M\sim$ 350 $GeV\Rightarrow$ Eigenvalues: (-196,179,651)~GeV.

⇒ Heavy mirror quarks.

Similar considerations for the leptons.

Constraint from $\sin^2 \theta_W(M_Z)$

$$G \xrightarrow{M} G_1 \xrightarrow{\tilde{M}} G_2 \xrightarrow{M_{LR}} SU(3)_c \otimes SU(2)_V \otimes U(1)_Y$$

$$G = SU(4)_{PS} \otimes SU(2)_L \otimes SU(2)_R \otimes SU(2)_L' \otimes SU(2)_R'$$

$$G_1 = SU(3)_c \otimes SU(2)_L \otimes SU(2)_R \otimes SU(2)_L' \otimes SU(2)_R' \otimes U(1)_S$$

$$G_2 = SU(3)_c \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_Y$$

• We require

$$0.2308 \le \sin^2 \theta_W(M_Z^2) \le 0.2314$$

• Basic formulae:

$$\sin^2 \tilde{\theta}_W(M_{LR}^2) = \sin^2 \tilde{\theta}_W^0 \{ 1 - C_S^2 \frac{\tilde{\alpha}(M_{LR}^2)}{\alpha_S(M_{LR}^2)} - 8\pi \tilde{\alpha}(M_{LR}^2) \}$$

$$[K \ln(\frac{\tilde{M}}{M_{LR}}) + K' \ln(\frac{M}{\tilde{M}})]\}$$

$$sin^2\tilde{\theta}_W^0 = \frac{1}{3}$$

$$K = b_1 - 2b_2 - \frac{2}{3}b_3$$

$$K' = C_S^2 \left(\tilde{b} - b_3 \right)$$

• From
$$\sin^2 \theta_W(M_{LR}^2) = \frac{2 \sin^2 \tilde{\theta}_W(M_{LR}^2)}{1 + \sin^2 \tilde{\theta}_W(M_{LR}^2)} \Rightarrow \sin^2 \theta_W(M_Z)$$
.

• For
$$\frac{M_{LR}}{M_Z} = 5 - 10 \Rightarrow \tilde{M} \sim 10^7 - 10^8 \, GeV$$
 and $M \sim 10^{15} - 10^{17} \, GeV$.

ullet M_{LR} : "mass" of the heavy W's and Z.

M: quark-lepton unification mass.

Computations were done for 3 and 4 generations. Why 4?

Phenomenology of Electroweak Scale ν_R 's

Majorana neutrinos with electroweak scale masses

⇒ lepton-number violating processes at electroweak scale energies .

One can produce ν_R 's and observe their decays at colliders (Tevatron(?), LHC,ILC...) \Rightarrow Characteristic signatures: like-sign dilepton events (first examined in the context of L-R models by Keung and Senjanovic). \Rightarrow A high-energy equivalent of neutrinoless double beta decay. That could be the smoking gun for Majorana neutrinos!

• Production of ν_R 's (Tevatron, LHC, ILC):

$$q + \bar{q}/e^{+} + e^{-} \rightarrow Z \rightarrow \nu_{R} + \nu_{R}$$

and e.g.

$$u + \bar{d} \rightarrow W^+ \rightarrow \nu_R + l_R^{M,+}$$

- Decays:
 - ν_R 's are Majorana and can have transitions $\nu_R o l_R^{M,\mp} + W^\pm$.
 - A heavier u_R can decay into a lighter l_R^M and

*
$$q + \bar{q}/e^+ + e^- \to Z \to \nu_R + \nu_R \to l_R^{M,\mp} + l_R^{M,\mp} + W^{\pm} + W^{\pm}$$

 $\to l_L^\mp + l_L^\mp + W^\pm + W^\pm + \phi_S + \phi_S$, where ϕ_S would be missing energy.

*
$$u + \bar{d} \to W^+ \to \nu_R + l_R^{M,+} \to l_R^{M,+} + l_R^{M,+} + W^-$$

 $\to l_L^+ + l_L^+ + W^- + \phi_S + \phi_S$

Interesting like-sign dilepton events! One can look for like-sign dimuons for example.

Careful with background! For example one of such background could be a production of $W^{\pm}W^{\pm}W^{\mp}W^{\mp}$ with 2 like-sign W's decaying into a charged lepton plus a neutrino ("missing energy"), $O(\alpha_W^2)$ in amplitude.

In addition, depending on the lifetime of the mirror leptons, the SM leptons appear at a displaced vertex. De-

tailed phenomenological analyses are in preparation: SM background, event reconstructions, etc...